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A laminar boundary layer develops in a favourable pressure gradient where the
velocity profiles asymptote to the Falkner & Skan similarity solution. Flying-hot-wire
measurements show that the layer separates just downstream of a subsequent region of
adverse pressure gradient, leading to the formation of a thin separation bubble. In an
effort to gain insight into the nature of the instability mechanisms, a small-magnitude
impulsive disturbance is introduced through a hole in the test surface at the pressure
minimum. The facility and all operating procedures are totally automated and phase-
averaged data are acquired on unprecedently large and spatially dense measurement
grids. The evolution of the disturbance is tracked all the way into the reattachment
region and beyond into the fully turbulent boundary layer. The spatial resolution of
the data provides a level of detail that is usually associated with computations.

Initially, a wave packet develops which maintains the same bounded shape and
form, while the amplitude decays exponentially with streamwise distance. Following
separation, the rate of decay diminishes and a point of minimum amplitude is reached,
where the wave packet begins to exhibit dispersive characteristics. The amplitude then
grows exponentially and there is an increase in the number of waves within the packet.
The region leading up to and including the reattachment has been measured with a
cross-wire probe and contours of spanwise vorticity in the centreline plane clearly show
that the wave packet is associated with the cat’s eye pattern that is a characteristic of
Kelvin–Helmholtz instability. Further streamwise development leads to the formation
of roll-ups and contour surfaces of vorticity magnitude show that they are three-
dimensional. Beyond this point, the behaviour is nonlinear and the roll-ups evolve
into a group of large-scale vortex loops in the vicinity of the reattachment. Closely
spaced cross-wire measurements are continued in the downstream turbulent boundary
layer and Taylor’s hypothesis is applied to data on spanwise planes to generate three-
dimensional velocity fields. The derived vorticity magnitude distribution demonstrates
that the second vortex loop, which emerges in the reattachment region, retains its
identity in the turbulent boundary layer and it persists until the end of the test section.

1. Introduction
Separation can occur at the leading edge of a blunt plate, i.e. in the vicinity (or

just downstream) of the stagnation region. Separated flows can also arise after a
boundary layer has undergone significant development, at a position where there
is a change of surface geometry, such as flow over a forward or backward facing
step, or flow over a three-dimensional hump. Alternatively, a boundary layer forming
on a smooth continuous surface may separate because of the application of an
adverse pressure gradient (APG). Classification into these distinct groups is based
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on consideration of the most likely source of disturbances leading to growth of
instabilities in the detached layer. The present work is concerned with the latter
group, i.e. two-dimensional laminar boundary layer separation caused by application
of an APG on a smooth surface.

Despite many studies of separated and reattaching flows there is still relatively little
known about the unsteady flow structure. The response of separated flows to small-
amplitude two-dimensional disturbances is reasonably well understood in terms of
linear stability theory. However the behaviour of large-amplitude disturbances and the
response of separated flows to three-dimensional disturbances, are poorly understood,
even in the simplest of geometries. The objective of the present study is to gain a
better understanding of the unsteady aspects, i.e. the underlying physical mechanisms
governing the growth of disturbances (which originate in the layer upstream of
separation) and the onset of nonlinearity and the final stages where breakdown of
the disturbances is associated with turbulent reattachment.

Separated flow often occurs near the leading edge of a two-dimensional airfoil
at an angle of attack, and the behaviour of the separated region is an important
consideration with respect to the stalling characteristics of the airfoil. Jones (1934)
classified three basic types of stalling characteristics of two-dimensional airfoils. The
first type is caused by separation near the trailing edge while the other two types
of stall are associated with separation near the leading edge. Based on detailed
boundary-layer measurements associated with stalling airfoils, McCullough & Gault
(1951) suggest that the other two types of stall consist of (i) leading-edge stall, caused
by an abrupt separation near the leading edge without subsequent reattachment, and
(ii) thin-airfoil stall, consisting of a laminar separation near the leading edge, with
a turbulent reattachment point that moves progressively rearward with increasing
incidence. At high Reynolds numbers or at low incidence, the extent of the separation
bubble created by the reattachment is typically small and of order 1% of the airfoil
chord. However, with an increase in the angle of incidence or a reduction in the flow
speed, a short bubble can burst leading to a long bubble, and eventually the shear
layer may even fail to reattach, leading to a detached shear layer in which vortex
shedding can occur. The change in the mode of the separation and reattachment can
occur gradually or sharply depending on the type of airfoil.

Various parameters have been proposed for correlating the characteristics of sep-
aration bubbles. Many investigators, e.g. Thwaites (1949) and Curle & Skan (1957),
have proposed boundary layer separation criteria based on the following pressure
gradient parameter:

m = (θ2
s /ν)(∂U1/∂x)s (1.1)

where the subscript s refers to conditions at the separation point, θ is the momentum
thickness of the layer, ν is the kinematic viscosity, U1 is the free-stream velocity and
x is the coordinate in the streamwise direction.

Gaster (1966) performed a study of laminar separation bubbles on a flat plate
under a wide range of Reynolds numbers and pressure distributions. He proposed an
improved scaling for predicting the formation of long or short bubbles. Gaster argued
that the fluid is practically stationary under the separated layer so the pressure gradient
on the surface is almost zero. He suggested that the pressure gradient parameter should
be based on the unseparated potential flow. Based on these arguments, he proposed
two parameters for scaling the bursting of short bubbles, i.e. the Reynolds number
based on the momentum thickness at the separation point and a modified pressure
gradient parameter,

(
θ2
s /ν
) (

∆U1/∆x
)
, where ∆U1 is the velocity difference based on
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the unseparated potential flow over the length of the bubble, ∆x. Gaster tripped the
laminar layer to produce a fully attached turbulent boundary layer which enabled
him to estimate ∆U1.

Two-dimensional separated flow contains a critical point and the linearized solution
of the Navier–Stokes equations gives the angle, γ, between the surface and the
separation streamline as

tan γ = −3

(
∂τo

∂x

/
dP

dx

)
s

, (1.2)

where τo is the shear stress at the surface, e.g. see Lighthill (1963). Dobbinga, Ingen &
Kooi (1972) investigated a wide variety of separated flows and proposed the following
simple empirical relation for γ:

tan γ = B/Rθs , (1.3)

where Rθs is the Reynolds number based on the momentum thickness at separation
and B has values ranging from 15 to 20.

Observation of nominally two-dimensional (including axisymmetric) flows reveals
an almost universal tendency to develop localized three-dimensional phenomena
which can dominate the behaviour of the mean flow. Separated laminar flows are es-
pecially susceptible to this tendency. For example, almost invariably, three-dimensional
cellular features are observed in the oil-flow pattern in the reattachment region behind
a backward facing step, e.g. Roshko & Thomke (1966). It is less widely appreciated
that similar three-dimensional cellular patterns also tend to occur for the case of
separation and reattachment on a smooth continuous surface. A vivid example of
three-dimensional cellular features for the case of a hemisphere-cylinder at zero angle
of attack is visible in the oil-flow visualization studies of Peake & Tobak (1980).
A laminar separation bubble in the form of an azimuthal ring can occur for the
hemisphere-cylinder at zero angle of attack. This is the counterpart of the separation
bubble that can form near the leading edge of a two-dimensional airfoil. The most
striking feature of the oil-flow pattern shown by Peake & Tobak is the appearance of
an almost equal azimuthal spacing between the cellular features in the reattachment
region. The cause of these cellular features is unknown. One plausible explanation is
that they arise from instabilities associated with three-dimensional disturbances which
are present in the boundary layer upstream of the separation.

Laminar separated flows are inherently unstable, even at low Reynolds number, and
the flow downstream of the reattachment is most often turbulent. In addition to the
unsteadiness, the mean flow pattern is also dependent on instabilities that form in the
separated flow, e.g. the length of the bubble is sensitive to the background disturbance
level. Most prior investigations of laminar separation have been concerned with the
mean flow structure, e.g. Gaster (1966) and Peake & Tobak (1980). The objective
of the present study is to gain a better understanding of the underlying instability
mechanisms.

The criterion used to classify the type of separation of the mean flow also serves to
differentiate between the two mechanisms that lead to the formation of instabilities
in separated flows. The first mechanism involves the generation of disturbances in
the immediate vicinity of the change in the surface geometry, i.e. the step or hump.
The second involves the transformation of disturbances evolving in the pre-separated
layer into disturbances that are present in the separated flow, i.e. the receptivity of
the boundary layer upstream of separation is important. Both mechanisms can be
significant for the case where the separation is caused by local variations in the
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surface geometry. However, in this case, it is more likely that a coupling will occur
between the background (i.e. the environmental) disturbances and the appearance of
instability waves in the separated flow, see Dovgal, Kozlov & Michalke (1994).

The present work is concerned with a nominally two-dimensional separation bubble,
on a smooth flat surface, caused by application of an APG, i.e. disturbances which
lead to the development of instabilities will originate upstream. In terms of the
nomenclature used to describe the stalling characteristics of an airfoil, it will be
shown that the separated flow considered in the present study has the characteristics
of a short bubble.

One of the few investigations to focus on the details of the unsteady motions
associated with separation bubbles was performed by Pauley, Moin & Reynolds
(1990). They conducted a two-dimensional numerical investigation of the boundary
layer separation on the floor of a duct caused by an APG introduced by suction
through a port in the ceiling. The inflow boundary condition was the Blasius boundary
layer. The steady-state solution without suction was used as the initial condition and
the APG was applied impulsively at the start of the computation. A steady closed
separation bubble was observed when the APG was relatively weak. As the strength
of the APG was increased, the length of the separated region increased, oscillations
developed in the skin friction observed at a fixed point and eventually periodic vortex
shedding from the bubble was found to occur. The Strouhal number, based on the
shedding frequency, local free-stream velocity and the momentum thickness of the
layer at separation, was found to be independent of the Reynolds number and the
pressure gradient. They showed that the shedding frequency was the same as that
predicted by inviscid linear stability theory using parameters derived from the velocity
distribution in the separated shear layer.

Based on comparisons with Gaster’s results, Pauley et al. (1990) suggest that
‘bursting’ of a short separation bubble actually corresponds to the demise of unsteady
separation. It is unfortunate that the term ‘bursting’ was originally established in the
literature for describing the transformation from short to long separation bubbles.
More recently, the term bursting has been used to describe the onset (rather than
the demise) of unsteady phenomena such as those occurring in the transition from
laminar to turbulent flow.

Pauley (1994) investigated the effects of three-dimensional disturbances introduced
into the two-dimensional mean flow configuration of Pauley et al. (1990). The case of
a random and a harmonic disturbance were considered separately. In both cases, the
spanwise variations were amplified in the separation region and within the vortices
shed from the bubble. However the vortex shedding frequency was unchanged from
the two-dimensional case. The random perturbation appeared to have no observable
effect on the spanwise structure, i.e. the length of the bubble and the strength of
the shed vortices were the same as for the two-dimensional case when the velocity
field was averaged across the span. However, the harmonic disturbance was found to
increase the length of the separated bubble and it reduced the strength of the shed
vortex. The harmonic disturbance was imposed across the span with an amplitude of
0.2% of the free-stream velocity and only a single spatial distribution was considered,
i.e. the wavelength was half the width of the computational domain. Contours of the
spanwise velocity had the appearance of streamwise vortices and Pauley suggested
this was due to the formation of Görtler vortices, which is consistent with the work
of Inger (1987).

The spatially distributed disturbances studied by Pauley are more complex than
the case of a three-dimensional disturbance originating at a point. An example of
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this simpler case is given in the landmark work of Gaster & Grant (1975) who used
an impulsive disturbance at a point to generate a wave packet in a Blasius boundary
layer. Gaster (1975) argued that the impulsive disturbance would excite all possible
instability modes and that the wave packet forms through selective amplification and
interference of these waves. He modelled the wave packet as a summation over all
spanwise wavenumbers and frequencies of least-damped linear stability modes. He
was able to reproduce (at least qualitatively) both the growth and structure of the
wave packet observed by Gaster & Grant, by calculating the amplitude of each mode
as it travelled downstream.

Investigations of the stability characteristics of a nominally two-dimensional sepa-
ration bubble formed on the smooth surface of a two-dimensional airfoil are described
in the reviews by Kozlov (1984) and Dovgal, Kozlov & Simonov (1986). They consid-
ered two-dimensional disturbances created by 100 dB sound intensity generated by a
loudspeaker located in the diffuser of the tunnel and a vibrating ribbon located within
the layer in the favourable pressure gradient (FPG) region. They also considered a
three-dimensional disturbance generated by a point source in the FPG. Under acous-
tic excitation, the two-dimensional waves only became noticeable in the APG and
further downstream the growth rate practically coincided with the two-dimensional
waves initiated by the vibrating ribbon. The point source measurements are partic-
ularly relevant to the study considered in this paper but unfortunately many of the
experimental details are not clear. However one distinctive characteristic observed
when the point source was applied, is that considerable distortion of the mean flow
was found to occur within the bubble at locations far away from the immediate
vicinity of the ensuing wave packet.

It is evident that an impulsive disturbance originating at a point is a powerful
tool for exploring the stability characteristics of laminar flows. Following the work
of Gaster & Grant, an impulsive point disturbance is used in the present study in
an effort to gain insight into the underlying instability mechanisms occurring in the
separated flow.

2. Apparatus and experimental technique
The layer develops on a 1 m wide flat aluminium plate forming the test-section

floor of an open-return wind tunnel. The plate is supported above an optics table
which also serves as an extremely flat and rigid mounting platform for a high-speed
computer-controlled three-dimensional probe traverse. A flexible ceiling is contoured
to produce the pressure distribution and two Plexiglas sidewalls complete the test
section. A scaled side view of the test section is shown in figure 1.

The pressure distribution is essentially the same as that used by Spalart & Watmuff
(1993), which was specifically designed to create a turbulent boundary layer with a high
enough Reynolds number to sustain the turbulence and allow accurate experimental
measurements, but low enough for direct numerical simulation (DNS). The design
incorporates a region of FPG, just downstream of the trip wire to let the turbulent
boundary layer develop without unduly increasing the local Reynolds number. The
APG is then applied rapidly. The APG is only moderate (i.e. the turbulent pressure
gradient parameter, β ≈ 2) and the turbulent layer of Spalart & Watmuff remains
attached. Removal of the trip wire, while maintaining the same contoured ceiling
shape and the same inlet unit Reynolds number leads to a laminar boundary layer,
which separates in the APG and reattaches about 0.26 m downstream of the pressure
minimum.
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Figure 1. Scaled side view of 1 m wide test section with schematic showing the method for
introduction of an impulsive disturbance at the Cp minimum. Arrows labelled S and R indicate
the separation and reattachment points on the centreline without disturbance (from flying-hot-wire
results, figure 5a). - - - - -, 99% boundary layer thickness. Labels [1]–[4] refer to flow regimes.

The centreline pressure coefficient distributions for the laminar layer and the fully
turbulent layer of Spalart & Watmuff are shown in figure 2. The pressure coefficient
is defined as

Cp(x) =
P (x)− Pref

Ptot − Pref

, (2.1)

where P (x) is the static pressure measured with 0.6 mm diameter pressure taps
located on the centreline of the test plate, and Ptot and Pref are the total and static
pressures measured with a Pitot-static tube located 0.1 m downstream of the exit of
the contraction. Additionally, the velocity measured with the Pitot-static tube is used
for the calibration of the hot-wire probes and for feedback while adjusting the tunnel
speed to maintain the reference unit Reynolds number.

All pressures are measured using a MKS Baratron 398H differential pressure
transducer with a range of 133 Pa and a 270 B signal conditioner. The pressures from
a traversing Pitot tube, the 44 static wall tappings, and the reference Pitot-static tube
are connected to the transducer via a 48-port Scanivalve pressure switch operated
under computer control. A pause of 5 s is allowed for decay of transients after
switching to the desired port and the average reading is obtained over a period of
at least 30 s. The transducer contains a heating element that keeps the sensor at an
approximately constant temperature in an effort to minimize drift with temperature.
The reading obtained by connecting the same reference pressure across the transducer
is used to monitor the transducer drift and it has been found to be almost non-existent.
Nevertheless, as a precaution, this reading is always measured and then subtracted
from each measurement.

Dantec 55P05 normal- and 55P51 cross-wire probes have been modified by reducing
the prong separation and stiffening the prongs with the addition of a small web.
Wollastan wire is soldered to the prongs and etched to produce filaments 2.5 µm in
diameter and with an active length of 0.5 mm. The distance between the cross-wire
filaments is 0.2 mm. The same normal- and cross-wire filaments have been used for
all the measurements presented in this paper.

Perry, Lim & Henbest (1987) found substantial differences between profiles of the
Reynolds shear stress measured in a rough-wall boundary layer where the turbulence
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Figure 2. Centreline pressure distribution for two conditions in a laminar separation bubble study:
�, with disturbance; e, without disturbance. Lines S and R indicate separation and reattachment
points without disturbance. Also shown is the distribution for a turbulent layer, tripped in a FPG,
which does not separate: 4, Spalart & Watmuff (1993).

intensities are large compared to the mean velocity. The differences were found to
depend on the included angle between the cross-wire filaments and on whether the
probe was stationary or ‘flying’ upstream. The differences between the stationary and
flying results were substantial for conventional probes where the included angle is
nominally 90◦. Only small differences were observed when the included angle was
increased to 120◦. By tilting the probes in a uniform stream, Perry et al. found that
a flow angle of 45◦ could be imposed on the probe with the 120◦ included angle
without appreciable error, whereas the probe with 90◦ included angle started to
show errors at flow angles as low as 20◦. Since relatively high relative turbulence
intensities are experienced in the reattachment region, the included angle between
the cross-wire filaments was set to about 110◦, which is the maximum possible angle
in consideration of the probe geometry. Use of this angle will reduce the errors
compared to the standard 90◦ configuration. However, histogram estimates of the
probability density function of the instantaneous flow angle have not been measured
in the present configuration and the probe tilting tests described by Perry et al. were
not performed, so it is difficult to provide estimates of the magnitude of the errors in
the cross-wire data, particularly in the general vicinity of the reattachment.

Wall distances for the hot-wire probes are set using the electrical contact of a
needle with the test surface. The wall distance is calibrated by focusing a telescope
on the filaments and their images in the test surface. The telescope is also used to
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ensure accurate alignment of the filaments with respect to the test surface. When the
cross-wire probe is aligned normal to the test surface (i.e. for U and V measurements),
the distance is taken to be between the points where the filaments and their images
appear to cross. When the cross-wire probe is aligned for U and W measurements,
the distance is taken to be between the mid-points of the filaments and their images.
The closest data point to the test surface is 0.2 mm for the normal wire, and 1.2 mm
for cross-wires.

The wires are operated with Dantec 55M10 constant-temperature hot-wire anemome-
ters at a nominal resistance ratio of 1.8. The anemometers are operated with a flat
response for the feedback amplifier and the typical system response of 75 kHz is more
than adequate for the measurements. A d.c. voltage is subtracted from the anemome-
ter outputs and the resulting signals are amplified so that they lie between ±10 V
over the range of velocities to be experienced by the wires. The hot-wire signals are
not filtered.

The unit Reynolds number based on the reference free-stream velocity (Uref )
is 4.28 × 105 m−1 (i.e. Uref ≈ 6.5 m s−1). The reference conditions were measured at
frequent intervals during all measurements and the unit Reynolds number was set to
within 0.5% following the measurement of each profile by adjusting the speed of the
fan. The free-stream unsteadiness, at a position on the centreline, 0.1 m downstream
of the entry to the test section is given by u/Uref ≈ 0.001 (where u is the r.m.s. velocity
fluctuation). Spectral measurements of the signal from a normal hot wire indicate
that about 90% of the free-stream unsteadiness occurs below a frequency of 10 Hz.
The distribution is relatively uniform in this frequency band with the exception of
a narrow concentration of energy in a region centred around the rotational speed
of the fan (approximately 6 Hz). The energy level at the blade-passing frequency of
the fan (approximately 72 Hz) is relatively small. The correlation between the signals
from two normal hot-wire probes located in the free stream and displaced 0.25 m in
the spanwise direction, indicates that nearly 50% of the energy of the free-stream
unsteadiness is in the form of acoustic disturbances generated by the fan.

2.1. Automation of the experiment

A high-speed computer-controlled three-dimensional probe traverse is integrated
with the test section. The size and repeatability of the measurement volume are
2000± 0.1 mm in the (streamwise) x-direction, 100± 0.05 mm in the y-direction (nor-
mal to the test surface) and ±200 ± 0.05 mm in the (spanwise) z-direction. The
maximum traversing speed in the x-direction is 1.5 m s−1, which is sufficient for flying-
hot-wire measurements in the region of reversed flow, see Watmuff, Perry & Chong
(1983). A microVAX II computer is used to control tunnel speed, probe traversal
and data acquisition. A high-speed 15-bit Tustin analogue-to-digital converter is used
for double-buffered data acquisition and processing. Processing of data in real time
is an important requirement for the experiment owing to the total quantity of raw
data acquired, particularly for the phase-averaged measurements. Storage of raw
data for post-experimental processing was considered to be impractical owing to the
excessively large disk storage requirements. Therefore considerable time was spent
optimizing the double-buffered data acquisition and processing algorithms so that
the real-time processing did not introduce significantly longer run times, see Watmuff
(1995). Briefly, two arrays are set aside in computer memory. Data are acquired and
transferred to each array alternately. True double buffering allows previously acquired
data that are stored in one array to be processed, while data are simultaneously ac-
quired and transferred to the other array. High-speed algorithms for processing the
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hot-wire data provide a system throughput of 75 k s−1 for normal wires and 25 k s−1

for cross-wires. These rates can be sustained indefinitely even though the calculations
are performed in double precision. The hot-wire calibration and data processing
algorithms are described in more detail in § 2.3.

A considerable investment in both hardware and software has enabled all the
experimental procedures to be totally automated. Redundant safety measures and
error detection and recovery schemes are located at each stage throughout the code.
Complex three-dimensional measurement grids can be designed and viewed ahead
of time. Program execution may be interrupted, asynchronously, at any stage, for
any purpose, such as modification of control variables or verification of hardware
operation, and then continued without loss of continuity. At a higher level, hot-
wire calibration drift is monitored at regular intervals and new calibrations are
performed and the measurements are repeated (automatically) until the drift is within
a specified tolerance (typically 0.5%). Operation of the facility has been refined to the
point where experiments can be performed continuously for several weeks at a time
without scheduled manual supervision.

2.2. Introduction of impulsive disturbance at a point for generation of the wave packet

As mentioned in the introduction, Gaster & Grant (1975) were among the first to
measure the evolution of a three-dimensional wave packet in detail by deliberately
introducing a small-amplitude impulsive disturbance into a Blasius boundary layer.
The motivation for using an impulsive disturbance was to excite all possible instabil-
ity modes, thereby leading to a wave packet formed through selective amplification
and interference of the waves. Gaster (1975) treated the wave packet as a summation
over all spanwise wavenumbers and frequencies of least-damped linear stability eigen-
modes. He was able to reproduce both the growth and structure of the wave packet
measurements by calculating the amplitude of each mode as it travelled downstream.

Following Gaster & Grant, a small-magnitude disturbance has been introduced into
the layer considered in the present work. The objective is to gain some understanding
of the instability mechanisms in the separation bubble. The disturbance is introduced
at the Cp minimum, since this is a clearly defined reference point that is located
upstream of the separation. The motivation for using an impulsive disturbance is the
same as in the work of Gaster & Grant, i.e. to excite all modes followed by selective
amplification in the separated region of interest. The disturbance is repetitively
introduced through a 0.6 mm diameter static pressure tapping as shown schematically
in figure 1. The electromagnetic shaker and diaphragm perform the same function
as electric speakers that have been used in previous studies, i.e. the source of the
acoustic disturbance. The frequency response of the shaker is of order 1.5 kHz. Unlike
the material used for speaker cones, the diaphragm is completely impervious to air
flow so there is not even a small mean flow into or out of the hole in the test surface
due to a static pressure difference. The length of the pressure tubing connecting the
diaphragm to the pressure tap is 25 mm.

For the impulsive disturbances used in wave packet and turbulent spot studies, it
is common practice to start sampling at a fixed frequency, after waiting a certain
period of time after the introduction of the disturbance, e.g. see Cohen, Breuer &
Haritonidis (1991). A number of realizations are measured after which an ensemble
average is obtained for each data point. The technique is based on the same principles
as averaging on the basis of the phase of the disturbance cycle, e.g. Reynolds &
Hussain (1972), Cantwell & Coles (1983) and Perry & Watmuff (1981). However,
one major difference between this technique and the phase-averaging method is
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that the waiting period and the duration of sampling (i.e. the number of samples)
can be designed such that only the relevant information associated with the wave
packet is captured at the downstream measurement points. Furthermore, the time
interval between the introduction of successive disturbances need not be periodic and
it can be made arbitrarily large to allow the flow to fully recover from transients
introduced by the passage of the disturbance. The data processing and storage
requirements can be minimized since measurements are not required of the quiescent
velocities observed before the arrival of the disturbance and after the passage of the
disturbance, leading up to the start of the next disturbance cycle. While the technique
described above offers several benefits, the phase-averaging method has been used for
the measurements presented in this paper instead. The implications and the reasons
for using the phase-averaging method are discussed in more detail in § 2.3.

Attempts to observe the final nonlinear breakdown of a wave packet into a turbulent
spot in the Blasius boundary layer have not been successful, e.g. Cohen et al. (1991).
One explanation for this lack of success is that there is considerable variance in the
downstream position where the final nonlinear breakdown of the wave packet occurs.
In order to minimize the spatial jitter, most experimental studies of turbulent spots
have used rather large disturbances (e.g. an electric spark or a strong impulsive jet
through a hole in the wall) to force the formation of the spot to occur close to the
source of the disturbance. The measurements of Cantwell, Coles & Dimotakis (1978)
suggest that a spot appears to consist essentially of one or two large eddies. However,
flow visualization studies have demonstrated that a typical spot appears to consist of
an array of vortex loops, e.g. Perry, Lim & Teh (1981). Apparently, the variance in the
underlying detailed structure, from realization to realization, causes washout of the
detailed motions. In many of these studies, natural spot formation was not observed
when the disturbance was removed, e.g. in the study of Cantwell et al. (1978), the
undisturbed layer remained laminar along the entire test section length. It is not
certain whether spots generated by such large disturbances are representative of spots
that develop from wave packets which are generated by much smaller disturbances.

Nearly all of the above difficulties, concerning the observation of the final nonlinear
breakdown of a wave packet, do not turn out to be limiting factors in the present
separation bubble study. One of the benefits of the separation bubble is that the
nonlinear growth of the instabilities occurs within a very small range of streamwise
positions. During the exploratory stage of the project, it was discovered that complex
large-amplitude hot-wire signals could be generated in the vicinity of the reattachment
in a very repetitive manner by applying a small-amplitude impulsive drive signal to
the shaker. The repetitive nature of these complex large-amplitude waveforms in
the reattachment region implied that phase-averaged data would not suffer from
washout owing to phase jitter or dispersion. It became evident during these tests
that the motions could be studied in great detail by obtaining measurements on
spatially dense three-dimensional grids. Further downstream, in the boundary layer
established after the reattachment, the hot-wire signals appeared to be fully turbulent
and uncorrelated with the impulsive disturbance originating upstream. However,
cursory measurements indicated that meaningful phase-averaged measurements could
be obtained far downstream of the reattachment region, although the r.m.s. amplitude
of the phase-averaged velocities in this vicinity was an order of magnitude smaller
than in the proximity of the reattachment.

Another significant observation is that the amplitude of the disturbance could be
made very small without diminishing the relative magnitude of the phase-averaged
velocities in the wave packet observed downstream. This is an important consideration
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since the observations obtained using small disturbance amplitudes are likely to be
more representative of the type of instabilities originating from small-magnitude
background disturbances that are present in the layer upstream of the separation.
This is in contrast with the turbulent spot studies mentioned above, where large
disturbances are introduced, which bypass known transition mechanisms.

At a fixed point upstream of the reattachment, the characteristics of the hot-wire
signals were found to depend on the magnitude and the duration of the impulse used
for the shaker drive signal and on the period between successive applications of the
impulse. The effects of varying the magnitude and the duration of the impulse were
found to be much the same, provided that they are both small. Linear behaviour was
observed under these conditions, i.e. the magnitude of the velocity signature observed
with a hot wire was the same, relative to small changes in either the magnitude or the
duration of the impulse. Nonlinear behaviour was observed when either the magnitude
or the duration of the impulse was large. For the present work, the magnitude and
duration of the drive signal applied to the shaker have been made as small as possible,
i.e. below this threshold, the electromagnetic shaker would not respond to the drive
signal.

As mentioned previously, the phase-averaging technique is used for all measure-
ments, i.e. data are sampled and sorted on the basis of the phase of the disturbance
cycle and all phase intervals are processed for the data storage. While the use of all
of the phase intervals leads to a larger data storage requirement, this disadvantage
is offset by the simpler post-experimental sorting procedure that is used to assemble
the data into groups corresponding to the entire measurement grid for each phase
interval. Furthermore, the data processing algorithms described in § 2.3 can only be
given a precise meaning if all phases are processed and stored. The use of the phase-
averaging method allows the Reynolds stress to be calculated and the distribution
can be related to the large-scale motions in the reattachment region and in the
downstream turbulent boundary layer.

The period between successive applications of the disturbance must be large enough
to allow for recovery of the flow after the passage of the disturbance. However too
large a period is undesirable because a larger number of phase intervals would be
required to resolve the motions of interest and this would increase the quantity of
stored data. Larger periods would also require a longer time for a given number of
realizations of the disturbance and therefore increase the total experimental run time.
A minimum period between successive applications of the disturbance was determined
by examining the hot-wire signals at a number of representative points in the flow.
The signals which required the longest time to recover from passage of the disturbance
were observed at points in the vicinity of maximum shear, at a streamwise position
corresponding to the start of the region of exponential growth of the disturbance
amplitude, i.e. x ≈ 0.72 m, as shown in figure 9. Small periods, e.g. 50 ms, did not
provide sufficient time for the transients to decay and this altered the character of
the signals, i.e. the structure of the flow. A period of 128 ms was finally selected for
performing the detailed study. The signals were the same as those produced by using
a much longer period between the impulses, e.g. 5 s, and this period allowed the same
degree of flow recovery after the transient passage of the disturbance.

In the region of exponential decay and growth of the disturbance amplitude
(see figure 9) the normal hot-wire signals indicate a dominant wave frequency of
approximately 87 Hz and spectral measurements indicate that very little energy exists
at frequencies corresponding to the higher harmonics. The period of the dominant
wave frequency (11.5 ms) corresponds to about 6 phase intervals which is sufficient
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to resolve the individual waves within the packet. In the reattachment region, the
streamwise spacing of the centreline cross-wire data is approximately 1

15
of the

streamwise extent of the cross-section through the emerging loops, i.e. the spatial
resolution is more than adequate to determine the detailed motions.

2.3. Hot-wire calibration and data processing algorithms

The phase-averaging process assumes that a flow variable, S can be described by a
global mean component, S , a periodic component, s̃, and a random component, s′′.
By definition, the total variable is given by the sum,

S = S + s̃+ s′′ (2.2a)

= 〈S〉+ s′′, (2.2b)

where 〈S〉 represents the total phase-averaged component. This conforms with the
notation used by Reynolds & Hussain (1972) and Cantwell & Coles (1983) with
the exception of the nomenclature for the random component, s′′. The reason for the
departure from their notation is to retain the conventional notation for decomposition
of S into a temporal mean value, S , and a random fluctuating component, s′, i.e.

S = S + s′. (2.3)

The drive signal applied to the shaker is sampled simultaneously with the hot-wire
voltages. The leading edge of this signal is arbitrarily used to define the beginning of
each phase cycle. Phase information is assigned to each sample using the relationship,

φ =

[
I − Ij
Ij+1 − Ij

]
Nφ + 1, Ij 6 I < Ij+1, (2.4)

where I is the sample number to which phase information, φ, is to be assigned, Ij
and Ij+1 are the sample numbers corresponding to the start of the jth and j + 1th
disturbance cycles and Nφ is the number of phase intervals. For all measurements
reported in the present work, Nφ = 64. Phase information is assigned to measurements
recorded before the first leading edge and after the last leading edge of the digitized
drive-signal time record by using the average size of the phase interval.

Watmuff (1995) described a method for high-speed processing of cross-wire data
in real time. The basis for the high speed is the assumption of simple cosine cooling
for the heat transfer because the expression for the effective cooling velocity of each
wire can then be reduced to a linear function of the applied velocity components.
The calibration inversion is greatly simplified because the measurements are linearly
dependent on the effective cooling velocity of each wire, which can be expressed
uniquely in terms of the output voltage. This makes it practical to use a pair of
one-dimensional look-up table arrays such that the number of elements corresponds
exactly to the measurement resolution over the full range. This is the fastest possible
method because the word returned by the analogue-to-digital converter can be used
directly as the index of the look-up table array and linear interpolation is avoided.
Watmuff showed that it is unnecessary to calculate U and V for each pair of cross-wire
samples when only the mean flow, Reynolds stress and triple products are required
and this further reduces the number of floating point calculations. The technique has
been extended for the phase-averaged measurements reported in this paper and is
outlined briefly below.

The effective cooling velocity of each wire can be expressed as functions f1 (E1)
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and f2 (E2) of the amplified anemometer output voltages E1 and E2, i.e.(
f1

f2

)
=

(
cosψe1

sinψe1

cosψe2
sinψe2

) (
U
V

)
, (2.5)

where ψe1
and ψe2

are the effective wire angles, i.e. the angle between the normal to
the wire filament and the streamwise direction, obtained by neglecting longitudinal
cooling.

Although the method assumes simple cosine cooling, the difference (typically 2◦ or
3◦) between the effective wire angle obtained by neglecting the longitudinal cooling
component and the true wire angle, provides compensation. Watmuff (1995) used
a Monte Carlo simulation to show that for moderate turbulence intensities (e.g.
u/ U= 20%) the errors are only slightly larger than the errors observed when the
longitudinal cooling is fully accounted for.

An alternative formulation of (2.5) is given by(
g1

g2

)
=

(
1 tanψe1

1 tanψe2

) (
U
V

)
, (2.6)

where g1 (E1) = f1 (E1) / cosψe1
and g2 (E2) = f2 (E2) / cosψe2

. The assumption of
simple cosine cooling is vital for the high speed of the data reduction because the
calibration inversion is then linear with respect to g1 (E1) and g2 (E2), i.e.(

U
V

)
=

(
1 tanψe1

1 tanψe2

)−1(
g1

g2

)
. (2.7)

Another advantage of the formulation in (2.6) is that the functions g1 (E1) and g2 (E2)
can be determined directly using a simple static calibration (i.e. with V =W = 0). In
the present work, ten static calibration data points are used and least-squares cubic
polynomials of best fit are determined for the effective cooling velocity as functions
of g1 (E1) and g2 (E2). The polynomials have been found to fit the static calibration
data to better than 0.5%.

Estimates of tanψe1
and tanψe2

are determined by oscillating the probe in the
cross-stream direction after each static calibration point measurement. Using the
high-speed traverse motors for this purpose means that additional special-purpose
hardware is not required, e.g. for tilting the probes. A voltage proportional to the
cross-stream traverse speed is derived from the motor step pulses. The wire and motor
speed voltages are sampled on the basis of the position of the motor and tanψe1

and
tanψe2

are obtained from least-squares lines of best fit applied to the perturbations of
g1 (E1) and g2 (E2) as functions of the motor velocity. Almost no positional-dependent
hysteresis could be found in the effective cooling velocity perturbations and the
effective wire angles were found to be essentially independent of the free-stream
velocity. Further details of the method can be found in Watmuff (1995). For the
earlier cross-wire measurements, the effective wire angles were determined from the
average of each static calibration point value. For later measurements, the probe
oscillations to determine the effective wire angle were only performed at the largest
free-stream calibration velocity.

The data in the centreline plane were measured using only the UV -orientation
of the cross-wire probe. Measurements in cross-stream planes and for the three-
dimensional grid were performed twice: once using the UV -orientation, and again
using the UW -orientation of the cross-wire probe. The global mean velocities, U and
V (or W ) and the total Reynolds stress components, u′2, u′v′ and v′2 (or u′w′ and w′2),
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were evaluated in double precision from running totals using all samples, i.e.
∑
g1,∑

g2,
∑
g2

1 ,
∑
g1g2 and

∑
g2

2 . An overbar applied to a time series implies a temporal
mean value. Arrays of dimension Nφ are used to store running totals of

∑
g1φ and∑

g2φ corresponding to each phase interval, φ. The total number of samples in each
phase interval is stored in an integer array to enable calculation of the phase-averaged
velocities 〈U〉 and 〈V 〉 (or 〈W 〉). The phase-averaged velocity perturbations ũ and
ṽ (or w̃) are determined by subtracting the global mean velocity components. The
Reynolds stress components at constant phase are given by ũ2, ũṽ and ṽ2 (or ũw̃ and
w̃2). The contribution to the total Reynolds stress by the phase-averaged velocities is
defined in the present work as the average over all phases, i.e. ũ2, ũṽ and ṽ2 (or ũw̃ and
w̃2). An overbar applied to phase-averaged quantities implies an average obtained
over all phases. Running totals of

∑
g2

1φ
,
∑
g1φg2φ and

∑
g2

2φ
corresponding to each

of the phase intervals are also stored for evaluation of the phase-averaged Reynolds
stress components, i.e.

〈
u′′2
〉
, 〈u′′v′′〉 and

〈
v′′2
〉

(or 〈u′′w′′〉 and
〈
w′′2
〉
). The contribution

to the total Reynolds stress components by the random background fluctuations are
defined by averaging over all phases, i.e. 〈u′′2〉, 〈u′′v′′〉 and 〈v′′2〉 (or 〈u′′w′′〉 and 〈w′′2〉).

Similar methods are used for the normal hot-wire data except that lookup table
values of velocity can be used directly (instead of the effective cooling velocities
required for the cross-wires). The data are also processed in real time and the stored
quantities consist of the global mean velocity and total Reynolds stress as well as
the phase-averaged velocity and normal Reynolds stress corresponding to each phase
interval.

It can be shown that the globally averaged Reynolds stress components are given
by the sum of the contribution and the background components, e.g.

u′2 = ũ2 + 〈u′′2〉. (2.8)

The ratio of the background component to the total Reynolds stress (such as 〈u′′2〉/u′2)
provides a quantitative measure of the randomness in the flow. The background
component of the Reynolds stress originates from two sources: (i) fluctuations due
to small-scale random motions superimposed on the large-scale motions and (ii)
dispersion, introduced by phase jitter and the physical differences between successive
realizations.

In the present work the phase averages at each point are derived from 16 384
samples obtained at intervals corresponding to the Nφ = 64 phase intervals used
to describe each cycle, i.e. a population of 256 disturbance cycles for the ensemble
averages for each phase interval. The 128 ms period between successive applications
of impulse for the drive signal leads to a sampling frequency of 500 Hz and a total
sampling period of 32.8 s at each data point. Both broadband and phase-averaged
quantities are calculated in real time using the same raw hot-wire voltages.

2.4. Measurement grids

Compared to a cross-wire probe, a normal hot wire can be positioned closer to the
wall, it has better spatial resolution, the effects of high shear are almost negligible,
and it is less susceptible to error in regions of high turbulence intensity. Mean flow
and broadband unsteadiness profiles have been measured with a normal hot wire at
∆x = 50 mm intervals on the centreline along the entire test section. Phase-averaged
normal hot-wire data have been measured on 42 spanwise planes at ∆x = 10 mm
intervals in the streamwise direction. The spanwise planes originate 10 mm upstream
of the hole where the disturbance is introduced (i.e. x = 0.59 m).

Phase-averaged cross-wire data have been measured on four successive grids on the
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centreline plane normal to the wall. The results from each grid have been combined to
form a composite data set on a single grid consisting of (Nx,Ny) = (250, 17), i.e. 4250
data points. The streamwise origin of the combined grid is located in the separation
bubble where the wave packet is still showing linear behaviour (x = 0.75 m) and the
grid extends to the end of the test section (x = 2.0 m). Only the UV -orientation of
the cross-wire probe was used for this centreline plane.

In an effort to capture the three-dimensionality of the flow, data were measured on
eight spanwise planes, normal to the test surface. Another spanwise plane consists of
a uniform 10× 10 mm grid at a fixed wall distance of y = 10 mm from the test surface
consisting of (Nx,Nz) = (126, 41), i.e. 5166 data points. The data for the spanwise
planes contain U, V and W data requiring that the measurements be performed
twice (once for the UV - and again for the UW -orientation of the cross-wire probe).
Temporal mean velocity and broadband Reynolds stress measurements have also
been measured without the disturbance. The same streamwise and horizontal grids
were used while only five of the spanwise planes normal to the wall were used for the
comparison.

The formation of vortex loops in the reattachment region is studied in detail using
a true three-dimensional grid consisting of (Nx,Ny,Nz) = (45, 17, 41) data points. The
31 365 grid points were also measured twice, using both orientations of the cross-wire
probe, to obtain all three velocity components. The cross-wire measurements on the
three-dimensional grid required a total of 31 days of continuous operation of the
automated facility.

3. Undisturbed mean flow
The centreline pressure coefficient distributions for the laminar layer and the fully

turbulent layer of Spalart & Watmuff (1993) are shown in figure 2. The major
difference between the Cp distributions associated with the laminar and turbulent
layers can be attributed to the presence of the separation bubble. Phase-averaged
measurements are presented in § 4, in which a small-amplitude impulsive disturbance
is introduced at the Cp minimum at x = 0.6 m. The Cp distribution for this case is
shown separately because the reattachment point on the centreline moves slightly
upstream when the disturbance is introduced into the layer.

The flow can be divided into four distinct regions as labelled in figure 1. The
first region, labelled [1], signifies where the laminar boundary layer develops in the
FPG. Region [2] corresponds to the vicinity where the laminar layer separates in
the APG leading to the formation of a detached shear layer. This region has been
further subdivided into the two regions labelled [2a] and [2b], depending on whether
the amplitude of the wave packet generated by the impulsive disturbance decays or
amplifies with streamwise distance. Region [3] is characterized by the rapid growth
of unsteadiness and the turbulent reattachment. Region [4] consists of the turbulent
boundary layer downstream of the reattachment.

3.1. Boundary layer properties in the FPG

The test plate forms an extension to the lower surface of the wind tunnel contraction.
This is an undesirable configuration since the origin and upstream history of the
boundary layer at the entrance of the test section are unknown. However the FPG
provides several beneficial effects, i.e. it presents a strong stabilizing influence and it
improves the spanwise uniformity of the layer (see § 3.4) and it is responsible for the
development of a self-similar Falkner & Skan mean velocity profile.
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The profiles near the entrance of the test section have inflection points close to the
wall, which are presumably caused by the APG (which was not measured) near the
exit of the contraction. These inflection points diminish with streamwise development
and they are almost non-existent by x = 0.4 m. Towards the end of the FPG, there
is a region of approximately 25 boundary layer thicknesses in length, where the free-
stream velocity variation follows a power law, i.e. U1 ∝ xm. The streamwise extent of
the region (0.42 m < x < 0.55 m) was estimated by inspecting a log-log plot of U1

versus x that was derived from interpolation of a cubic spline applied to the wall static
pressure Cp data points shown in figure 2. The value m = 0.28 was obtained from a
least-squares line of best fit over this streamwise range. In an effort to characterize the
layer in this region, the profiles are fitted to the Falkner & Skan similarity solution
using the wedge angle determined from the curve fit, i.e. β = 2m/(m+ 1) ≈ 0.44. The
only adjustable constant is the effective origin for the layer, xo, which corresponds to
the minima of the sum of the squares of the deviations of the measurements from the
Falkner & Skan profile.

Three experimental profiles are shown in figure 3(a) using the same effective origin,
which is located 0.56 m upstream of the entrance to the test section, i.e. xo = −0.56 m.
The corresponding Falkner & Skan profile is shown together with the Blasius profile
which is provided for reference. The experimental profiles match the Falkner & Skan
profile reasonably well, with the possible exception of the profile at x = 0.45 m, which
is the profile closest to the start of the region of constant β. The shape factors,
H = 2.34, 2.31 and 2.34, corresponding to profiles at x = 0.45 m, 0.50 m and 0.55 m,
are in good agreement with the Falkner & Skan value of H = 2.31 for β = 0.44.
The reasonably good fit of the experimental data suggests that the Falkner & Skan
similarity solution would form a suitable inlet boundary condition for a numerical
study of the separation bubble further downstream in the APG.

The momentum thicknesses of the three profiles in figure 3(a) are θ = 0.668, 0.651
and 0.654 mm corresponding to the streamwise positions of x = 0.45, 0.50 and 0.55 m.
The Reynolds numbers based on the momentum thickness and the local free-stream
velocity are Rθ = 317, 318 and 330 respectively. The corresponding Reynolds numbers
based on the displacement thickness are Rδ∗ = 742, 736 and 774 respectively.

The Reynolds number towards the end of the FPG is approximately one order of
magnitude less than the critical Reynolds number for the corresponding Falkner &
Skan profile, see Obremski, Morkovin, & Landahl (1969). Therefore the FPG presents
a very strong stabilizing influence and small-magnitude background disturbances of
all frequencies originating from upstream sources are likely to decay to quite a small
level before application of the APG.

3.2. Boundary layer separation in the APG

The free-stream velocity variation with streamwise distance also follows a power law
in the APG, i.e. β ≈ −0.74 in the region given by 0.66 m < x < 0.70 m. This value of
β is several times larger than the Falkner & Skan value corresponding to boundary
layer separation (i.e. β ≈ −0.2). Flying-hot-wire measurements (described in § 3.3)
have been used to estimate the streamwise location of the separation point on the
centreline at x = 0.64 m, i.e. the layer separates before reaching this region of constant
β. The centreline reattachment point is estimated from the flying-hot-wire data to be
located at x = 0.86 m.

Mean velocity profiles obtained with the stationary normal hot-wire probe in the
APG are plotted in three groups in figure 3(b–d). Profiles obtained near the end of the
FPG are shown in figure 3(b) for reference purposes. The profiles in figure 3(b) that
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are downstream of the separation (i.e. x > 0.64 m) clearly show the progression of the
detached shear layer away from the wall. The reverse flow that occurs close to the wall
cannot be determined with a stationary probe owing to hot wire directional ambiguity.
Furthermore, rectification of the hot-wire signals will occur if the magnitude of the
unsteadiness causes the velocity to change sign. Rectification will always introduce
a positive error into the mean velocity measurements. The positive error owing to
rectification will be largest when the mean flow is zero, which is one reason why the
profiles do not contain points of zero velocity. Another explanation is that calibration
of hot wires is notoriously difficult at low speeds. By repeating the stationary hot-
wire measurements in the region of separated flow it was discovered that the most
consistent data in the near-wall region are obtained if the zero velocity operating
point is included in the calibration. Hot wires are extremely sensitive at zero velocity
and small draughts in the test section can cause large voltage fluctuations. However
there is evidence to suggest that flow reversals occur in this situation, i.e. the velocity
time history contains points of exactly zero velocity where the hot-wire signals are
subject to rectification. The operating point corresponding to zero velocity is taken
to be the minimum voltage observed during a 30 s period after the wind tunnel
fan becomes stationary. No attempt was made to account for the effects of natural
convection in the hot-wire calibrations.

Profiles corresponding to the region labelled [2b] in figure 1 are shown in figure 3(c).
These profiles coincide with the region of rapid growth of the disturbance-generated
wave-packet amplitude with streamwise distance (0.7 m < x < 0.8 m). The continued
progression of the detached shear layer away from the wall is clearly evident. The
maximum shear in the mean flow, expressed as ∂( U/Uref )/∂y, decreases gradually in
an almost linear manner over the range 0.72 m < x < 0.78 m, which corresponds to
the region where the maximum amplitude of the wave packet undergoes exponential
growth with streamwise distance (see figure 9). The effects of hot-wire rectification,
mentioned above, are also visible. The broadband unsteadiness level is of quite low
magnitude in this region and the errors in the region of reversed flow remain fairly
small. However, the broadband unsteadiness increases very rapidly for x > 0.8 m and
the effects of hot-wire rectification become very pronounced near the wall, as shown
in figure 3(d ), especially in the vicinity of the mean reattachment point at x = 0.86 m.
The distributions of the mean shear and the broadband unsteadiness are shown in
the contour plots in figure 5(b, c). The regions affected by hot-wire rectification errors,
the relationship between the attributes of the separation bubble and the distributions
of the mean shear and the broadband unsteadiness will be discussed in more detail
in § 3.3 below.

3.3. Flying-hot-wire investigation of the separation bubble

The flying-hot-wire technique involves propelling the probe in the upstream direction
while measurements are made on the basis of the probe position. The superimposed
bias velocity reduces the magnitude of the velocity fluctuations relative to the increased
velocity experienced by the probe. Accurate measurements are possible in regions of
reversed flow. As mentioned in § 2.1, the maximum speed of the probe traverse in
the x-direction is 1.5 m s−1 and this proved to be sufficient to overcome the small
magnitude of the reversed flow in the separated region. The upstream velocity of
the probe traverse is measured simultaneously with the hot-wire signal so that
the velocity relative to a stationary observer can be obtained by subtracting this
quantity from each probe measurement. Each upstream passage of the probe traverse
results in a single sample at each position. Ensemble averages for the mean flow
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and Reynolds stresses are obtained by repeating the motion a sufficient number of
times for statistical convergence of the ensemble-averaged data. Although it can be
relatively time consuming to perform a large number of upstream traverse passes,
one advantage of the technique is that the measurements are obtained in parallel for
a large number of closely spaced data points.

The techniques for generating the sampling pulses that control the data acquisition
and for deriving the analogue signal to represent the traverse speed follow the
methods used by Watmuff et al. (1983). Briefly, the probe position and velocity are
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Figure 3. Centreline mean velocity profiles from a stationary hot-wire probe without the presence
of the disturbance. (a) FPG profiles in Falkner & Skan coordinates: ––––––, similarity solution
using effective origin, xo = −0.56 m and measured value, β = 0.44; - - - - -, Blasius profile, β = 0;
measurements at x positions, e 0.45; 4 0.50; + 0.55 m. (b) APG region [2a], decay of wave packet
amplitude: measurements at x positions, e 0.56; � 0.58; 4 0.60; 5 0.62; + 0.64; × 0.66; � 0.68 m.
(c) APG region [2b], spanwise dispersion of waves and exponential growth of maximum wave
packet amplitude: measurements at x positions, e 0.70; � 0.72; 4 0.74; 5 0.76; + 0.78; × 0.80 m.
(d ) Reattachment region [3] and start of turbulent boundary layer, region [4]: measurements at x
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derived from an optical linear encoder with a resolution of 10 µm and a maximum
speed rating in excess of 2 m s−1. Optical switches are used to detect the presence of
the traverse at either end of the measurement trajectory. The signals from the two
optical switches are combined in such a way as to produce a digital signal which
indicates when the traverse is located between the two switches and when it is moving
upstream. This signal is used to start the sampling. The signals from the encoder are
combined digitally to produce a pulse train consisting of 100 pulses per mm of traverse
movement. The pulse train is demodulated using a fourth-order Butterworth filter and
amplified to produce a signal proportional to the traverse speed. The traverse-speed
signal is calibrated by driving the input with a signal generator whose output is
measured with an accurate digital frequency meter. For the present measurements,
the traverse is accelerated from a position downstream of the first switch and the
encoder pulse train is divided digitally by 100 to generate sample pulses at ∆x = 1 mm
intervals along the test section.

Unfortunately, the total time for a single measurement cycle is quite long, i.e. around
8 s. However, the primary objective for performing the flying-hot-wire measurements
is to measure the reverse flow within the separated region. Since the flow in the
separated region is relatively steady, only 500 upstream passes are required for
adequate convergence of the mean flow. The mean velocity relative to a stationary
observer, U, and the mean square of the fluctuating component, u′2, are shown in
figure 4(a, b). The flying-hot-wire data are obtained at wall distances as close as
y = 0.5 mm. Point measurements of the deviations of the test-plate from the (x, z)-
plane of the traverse have been made independently using a 10 mm square grid by
attaching a dial gauge to the traverse. The deviations of the test plate over the entire
traversable (x, z)-plane were found to be within ±0.1 mm which provides an estimate
of the uncertainty of the wall distance.

A curious anomaly exists in the mean flow data for which a fully satisfactory
explanation has not been found. Oscillations can be seen in the mean velocity
distribution shown in figure 4(a) in the region given by 0.9 < x < 1.0 m, corresponding
to the turbulent boundary layer just downstream of the reattachment. The oscillations
could be the result of a standing wave pattern or other non-uniformity in the mean
flow. This possibility was explored with a stationary cross-wire probe by measuring
profiles normal to the test plate that were very closely spaced in the x-direction.
However, no evidence of a standing wave pattern was found to exist. Another
possibility is that the oscillations may be the result of probe vibration. However, it
is unlikely that the phase of the vibrations would correlate so well with streamwise
position, which is a necessary condition for the oscillations to appear in the ensemble
averages. One hypothesis, suggested by a referee, is that the phase of the vortex
shedding could be somehow triggered by the motion of the probe. The frequency
(f = 87 Hz) and wavelength (λc ≈ 0.05 m) of the waves provide an estimate of
their propagation speed as Uc ≈ 4.35 m s−1. The upstream speed of the probe for
these measurements is given by Up ≈ 1.2 m s−1. Assuming that the wavelength of
the fluctuations downstream of the reattachment is the same as that of the waves
upstream, then the time interval corresponding to the wavelength of the fluctuations
observed by the probe is given by ∆T = λc/(Up + Uc) ≈ 9 ms. The wavelength
seen by the moving probe, λp, is given by the probe travel during this interval, i.e.
λp = 10.8 mm. This compares favourably with the wavelength of the oscillations seen
in figure 4(a), i.e. λp = 11.2 mm. A plausible mechanism by which the upstream
motion of a probe could lock-in the phase of the vortex shedding process has not
been identified and the correspondence between calculated and measured wavelengths
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could be fortuitous. In any case, the triggering of the phase of the vortex shedding
process does not appear to introduce serious error, as indicated by the good agreement
between the stationary- and flying-hot-wire profiles in figure 6.

The distribution of the mean square of the fluctuating component, u′2, appears
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to pass through a local maximum and a local minimum before undergoing an
approximately exponential growth rate in the region 0.75 m < x < 0.85 m. The minima
in u′2 are consistent with the presence of a region of low background unsteadiness
that is observed in data obtained with a stationary probe and will be further discussed
below. The average growth rate of u′2 is shown in figure 4(b) for comparison with the
growth of the wave-packet amplitude in figure 9. While a larger number of samples
would be required for improved convergence of u′2, the convergence of U is sufficient
to determine the streamwise location of the point U = 0 at each y-position with
considerable certainty. Inspection of figure 4(a) shows that the region of reversed flow
is confined within a wall distance of about 4 mm.

Direct examination of the mean velocity vectors has not been performed using a
flying cross-wire probe. However it is possible to deduce a plausible representation of
the temporal mean separation bubble from the normal hot-wire data by assuming a
perfectly two-dimensional flow. For each of the five trajectories given by y < 4 mm,
the two streamwise positions where U = 0 in figure 4(a) have been plotted in the
(x, y)-plane shown in figure 5(a). These points are joined by dashed lines and they have
been extrapolated to the wall to estimate the streamwise location of the separation
point at x = 0.64 and the reattachment point at x = 0.86 m. The region between the
two dashed lines contains reversed flow and the tangent to the streamlines that cross
each line must be in the y-direction (since dy/dx = ∞). This information acted as a
guide for sketching the mean flow streamlines as seen by a stationary observer that
are shown in figure 5(a).

It can be shown from critical point theory, e.g. Lighthill (1963), that the slope of
the isocline given by dy/dx = ∞ is equal to 2

3
of the slope of separation streamline

defined by the angle γ given in (1.2). The measured value of tan β = 0.023 (i.e.
β = 1.3◦) and according to critical point theory the corresponding angle of separation
should be γ = 2.0◦. The angles γ and β are shown in figure 5(a) and the slope of
the separation streamline (based on the above considerations) provides additional
information for sketching the mean flow pattern. The empirical relation for the angle
of separation proposed by Dobbinga et al. (1972) is given by (1.3). The Reynolds
number based on the free-stream velocity and momentum thickness at the separation
point is Rθs = 387. Therefore the angle between the test surface and the separation
streamline predicted by the relationship of Dobbinga et al. is given by 2.2◦ < γ < 2.9◦.
The relative difference between the measured and predicted estimates of the angle of
separation is quite large but in absolute terms the difference is of order 0.5◦ and is
considered to be acceptably small.

At the separation point on the centreline, (1/ν) (∂U/∂x)s = −0.16 × 105 m−2 and
the momentum thickness, θs = 0.76 mm. Substitution into (1.1) leads to a value
of the Thwaites (1949) pressure gradient parameter of m = −0.092. This compares
favourably with the value of m = −0.082 suggested by Thwaites. Curle & Skan (1957)
found −0.171 < m < −0.068 for the onset of separation. The value of the pressure
gradient parameter m corresponding to separation in the present study is therefore
consistent with prior experiments.

Gaster (1966) proposed that the condition for bursting of a short bubble is de-
termined by a unique relationship between Rθs and a modified pressure gradient
parameter, i.e.

(
θ2
s /ν
) (

∆U/∆x
)
, where ∆U is the velocity difference based on the

unseparated potential flow over the length of the bubble ∆x. In the present study the
quantities ∆U and ∆x are estimated from the experimental turbulent boundary results
of Spalart & Watmuff (1993) shown in figure 2. In terms of Gaster’s nomenclature
and classification, the separation bubble in the present study is considered to be a
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Curves through sparse flying-hot-wire data faired by hand.

short bubble and the flow conditions are far from those corresponding to the onset
of bursting to form a long bubble.

The relationship between the distribution of the mean shear, ∂U/∂y, and the
characteristics of the separation bubble is not readily apparent from inspection of
the profiles shown in figure 3(b–d). Contours of ∂U/∂y derived from these normal
hot-wire profiles (obtained with a stationary probe) have been plotted in the (x, y)-
plane in figure 5(b) to readily allow a direct comparison to be made with features of
the separation bubble. The quantity ∂U/∂y represents the majority of the spanwise
component of the vorticity since the quantity ∂V/∂x is negligibly small. With the
assumption of two-dimensional mean flow, the contours closely approximate the
distribution of the temporal mean vorticity magnitude. The heavy dashed line shown
in figure 5(b) has been faired by hand through the maxima of ∂U/∂y(y) for each x-
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position, i.e. the line represents the trajectory of the inflection points, ∂U
2
/∂y2 = 0, in

the mean velocity profiles. Comparison of figures 5(a) and 5(b) clearly shows that the
region of maximum shear is located above the separatrix that defines the boundary
of the bubble. In particular, it should be noted that the maximum shear is located
well above the region of reverse flow. Contours of the r.m.s. unsteadiness arising
from background disturbances are shown using a logarithmic scale for amplitude in
figure 5(c). The trajectory traced out by the inflection points is also shown in the figure
and it is evident that the trajectory coincides with the maxima in the background
disturbance level at any given streamwise position. The observations provide strong
evidence that the dominant instability mechanism is inviscid and associated with the
inflectional velocity profiles.

It is interesting to note that a tongue-shaped region with an exceptionally low
background unsteadiness level appears to coincide with the isocline U = 0, just
downstream of the separation. At first, the low levels in this region were thought to
be anomalous and somehow associated with erroneous calibration of the hot wire at
low velocities. However, further evidence for the validity of the data in this vicinity can
be found in the flying-hot-wire measurements shown in figure 4(b). The trajectories at
a constant wall distance clearly show a local minimum in u′2, which is consistent with
the existence of the tongue-shaped region. It should be noted that the background
unsteadiness level in this region is lower than that of the free stream.

Comparisons of the inner region of the mean velocity profiles obtained with a
stationary and a flying hot-wire probe are shown in figure 6(a, b). The background
unsteadiness is relatively small at x = 0.80 m and the region affected by hot-wire
rectification errors coincides approximately with the region of reversed flow, as shown
in figure 6(a). The extent of the region of temporal mean reverse flow diminishes
as the reattachment is approached. However the relative size of the region affected
by rectification errors becomes much larger because of the greater amplitude of the
velocity fluctuations approaching the reattachment. For example, the profiles at the
position x = 0.84 m, shown in figure 6(b), indicate that the region of reversed flow
extends out to a wall distance of y ≈ 2 mm, while the region affected by rectification
errors extends to more than twice that wall distance, i.e. y > 4 mm. These comparisons
between the stationary- and flying-hot-wire mean velocity profiles have acted as a
guide for identifying regions in the phase-averaged data likely to be contaminated by
hot-wire rectification errors. In particular, it should be noted that the wave packet
measurements and the subsequent formation of vortex loops observed in § 4 are
mostly unaffected by hot-wire rectification errors.

3.4. Spanwise uniformity of the undisturbed mean flow

Observation of nominally two-dimensional laminar flows reveals an almost universal
tendency to develop localized three-dimensional phenomena. Separated laminar flows
are especially susceptible to this tendency. The three-dimensional phenomena can
arise from the growth of initially small-amplitude instabilities that are excited by
background environmental acoustical and vortical disturbances. An example of three-
dimensional phenomena arising from local instability is considered in detail in § 4.
Additionally, localized three-dimensional phenomena can arise from small-amplitude
mean-flow non-uniformities that are inherent in the upstream boundary layer.

The spanwise uniformity of the boundary layer is examined using velocity contours
derived from the total pressure measured with a 1.54 mm diameter Pitot tube posi-
tioned flush with the test surface. The velocity is calculated using the static pressure
on the centreline (corresponding to the streamwise position of the Pitot tube) that
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was obtained from a cubic spline applied to the centreline Cp measurements shown
in figure 2. The grey-scale contour levels of velocity in figure 7(a) are obtained from
measurements on a uniform rectangular grid consisting of (Nx,Nz) = (9, 81), i.e. 729
data points, with spacing ∆x = 25 and ∆z = 5 mm. The effects of shear and other
wall effects make it difficult to attach precise meaning to the data in general. How-
ever, in the FPG region, a considerable proportion of the mean velocity profile is
approximately linear with wall distance, as shown in figure 3(a, b). The extent of the
linear variation with wall distance exceeds the diameter of the Pitot tube. Therefore,
at a given streamwise position in the FPG, the magnitude of the spanwise variations
in velocity about the mean value also correspond to spanwise variations in the skin
friction. The FPG has the beneficial effect of reducing the spanwise non-uniformity of
the layer. For example, the spanwise variation of skin friction at x = 0.3 m is within
±6% while at the end of the FPG, at x = 0.6 m, the variation is within ±2 1

2
% of the

mean value across the span.
Note the appearance of streamwise streaks that are associated with regions of

locally higher velocity in the contours in figure 7(a). The origin of these streaks is
unknown. The elevated levels suggest that the layer could be locally thinner in the
vicinity of the streaks but this has not been confirmed by independent measurement.
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Figure 7. Undisturbed mean flow two-dimensionality. (a) Velocity inferred from a 1.54 mm diameter
Pitot tube flush with the test surface. Arrows labelled S indicate centreline separation point. Grid
details: (Nx,Nz) = (9, 81), ∆x = 50, ∆z = 5 mm. (b) Photograph of naphthalene sublimation
flow-visualization study.

The spacing of the streaks in the spanwise direction does not appear to be strongly
correlated with length scales based on the boundary layer thickness. It is noted that
these streaks persist in the contours after the layer has separated but it has not been
determined at this stage whether they are associated with the spanwise variations in
mean flow quantities observed in the vicinity of the reattachment (e.g. figure 8a).

A photograph of the result of a naphthalene sublimation flow visualization study
is presented in figure 7(b). Higher magnitude skin friction associated with turbulent
flow leads to more rapid sublimation and the photograph was acquired just after the
naphthalene had been completely scoured from the test surface in the reattachment
region. The streamwise location of the mean reattachment on the centreline (as
indicated by the removal of the naphthalene) is in very good agreement with the
location determined from the flying-hot-wire measurements (i.e. x = 0.86 m). The
development of the turbulent corner flows associated with the sidewalls (i.e. z =
±0.5 m) are also clearly visible in the photograph. The contamination by the corner
flows appears to be confined to the extremities of the test section and the overall
two-dimensionality of the reattachment appears to be acceptable, at least on a large
scale.

Spanwise variations exist on a finer scale within the reattachment region. The
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variation in the mean velocity was found to be less pronounced than the variations in
the r.m.s. of the fluctuating quantities which are briefly considered here. Contours of
the velocity fluctuations normal to the wall are shown in figure 8(a–d). The contours
are derived from cross-wire data, obtained on the uniform rectangular measurement
grid that is aligned parallel to the test surface at y = 10 mm. The evolution of an
impulsive disturbance deliberately introduced at the Cp minimum is considered in § 4.
The broadband distribution (v 2)1/2/Uref , is shown without the impulsive disturbance
in figure 8(a), and with the disturbance acting in figure 8(b). The reduction in the
peak amplitude when the disturbance is present, as shown in figure 8(b), and the
contours of phase-averaged quantities in figure 8(c, d) will be discussed in § 4.

One manifestation of the spanwise non-uniformity in figure 8(a) is the waviness of
the contours upstream of the reattachment. Another manifestation is the spanwise
variations in the peak values which are located about 40 mm downstream of the cen-
treline reattachment point, which is indicated by the arrows labelled R in figure 8(a).
It is clear that the spanwise location of the peak amplitude levels downstream of
the reattachment correlate well with corresponding regions of elevated amplitude at
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positions upstream of the reattachment. This apparently self-evident observation does
not hold for the case when the impulsive disturbance is deliberately introduced in the
layer, as shown in figure 8(b). In fact, the peak r.m.s. amplitudes in the vicinity of the
centreline are smaller when the disturbance is present in the layer.

The spanwise variations of the peak amplitude in the vicinity of x = 0.9 m in
figure 8(a) are greater than ±25% of the mean value across the span. It is unclear
whether the clustering of the peak values is associated with (a) nonlinear growth
of instabilities originating upstream, (b) small-amplitude non-uniformities inherent
in the layer, or (c) another, as yet unknown cause. However, it is plausible that
the phenomena responsible for the clustering of the contours could be related those
responsible for the three-dimensional cellular features observed in the oil-flow pattern
in the reattachment region behind a backward facing step, as observed by Roshko &
Thomke (1966) and in the oil-flow pattern for the hemisphere-cylinder at zero angle
of attack shown by Peake & Tobak (1980).

4. Phase-averaged measurements
As mentioned previously, a small-amplitude impulsive disturbance is introduced

repetitively through a 0.6 mm diameter hole in the test surface at the Cp minimum, as
shown schematically in figure 1. The evolution of the disturbance is tracked from its
source, all the way into the reattachment region and beyond into the fully turbulent
boundary layer.

4.1. Formation and development of the wave packet

Phase-averaged normal hot-wire data have been measured on 42 spanwise (y, z)-
planes spaced at ∆x = 10 mm intervals along the test section using a stationary probe.
Each (y, z)-plane consists of (Ny,Nz) = (17, 11), i.e. 187 data points. The first spanwise
plane is located 10 mm upstream of the hole at the Cp minimum where the disturbance
is introduced and the last plane is located 0.14 m downstream of the reattachment, i.e.
at x= 1.0 m. Directly above the hole, at the Cp minimum, the disturbance penetrates
only about 1 mm into the layer and it has a maximum negative amplitude of 0.03Uref .

One way of characterizing the growth of the disturbance is to consider the variation
of the phase-averaged amplitude with streamwise distance. The maximum r.m.s. am-
plitude of the phase-averaged perturbations, considering all points in each spanwise
plane, is plotted against streamwise distance in figure 9. In terms of the definitions
given in § 2.3, the notation for the r.m.s. amplitude is uφ = (ũ2)1/2. At first, the layer
is attached and the maximum r.m.s. amplitude decays exponentially with streamwise
distance. The rate of decay is reduced after the layer separates, at x = 0.64 m, and the
maximum r.m.s. amplitude observed in the spanwise planes reaches a minimum value,
uφ(y, z) = 0.0018Uref , at x = 0.68 m. From this point the amplitude increases and
ultimately undergoes exponential growth in the region given by 0.72 m < x < 0.80 m.
The average growth rate of the background disturbances (scaled from figure 4b) is
shown in figure 9 and it is evident that the exponential growth rate of the wave packet
is essentially the same as the background disturbances. Exponential variation of dis-
turbance amplitude with Reynolds number is a characteristic often seen in the results
of linear stability calculations. For example, Mack (1984) demonstrated exponential
growth of the Tollmien–Schlichting wave amplitude with Reynolds number in the
Blasius boundary layer over a substantial portion of the amplification range. Dovgal
& Kozlov (1990) observed extensive regions of exponential growth with streamwise
distance for two-dimensional waves in the separation bubble behind a hump on a flat
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test surface. They found that the growth rate of disturbances did not depend on the
initial amplitude, when it is small enough, thereby indicating linear behaviour. Dovgal
et al. (1994) note that ‘linearity of disturbances with amplitude · · · is a remarkable
feature of separation bubbles’. The exponential growth of the wave packet amplitude
shown in figure 9 suggests that the behaviour of the wave packet is linear, despite
reaching the rather large amplitude of uφ(y, z)max/Uref ≈ 20% by the end of this
region, at x = 0.8 m.

The streamwise development of the 99% boundary layer thickness is shown in
figure 1. The layer thickness is derived from the closely spaced normal hot-wire
profiles on the centreline and the development is correctly scaled with the test section
geometry. On this scale, the growth appears to be almost linear up to the end of the
region of exponential growth rate of the disturbance, given by x = 0.8 m. It is evident
that the demise of linear behaviour in the disturbance growth rate coincides with the
beginning of a region of rapid growth of the boundary layer thickness.

Waveforms of the phase-averaged perturbations are shown for all y-positions
on the centreline for a number of streamwise planes in figure 10(a–c). The small-
amplitude oscillations that are superimposed on the positive overshoot following the
main large negative perturbation in figure 10(a) could be the result of transient
acoustic reflections in the system used to introduce the disturbance. In any case,
these oscillations decay with streamwise distance and they are only barely discernible
at the temporal mean separation point, as shown in figure 10(b). The waveforms
at all streamwise positions leading up to the separation point have much the same
form. However, just downstream of the separation, a new small-amplitude positive
perturbation emerges which is located ahead of the original negative component.
The magnitude of the new positive perturbation grows with streamwise distance
and by the streamwise position of minimum r.m.s. wave amplitude (x= 0.68 m), it is
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Figure 10. Phase-averaged streamwise velocity perturbation waveforms for all points (Ny = 17)
on the centreline of the spanwise plane located at streamwise positions: (a) 10 mm downstream of
source, x = 0.61 m, (b) temporal mean separation point, x = 0.64 m, and (c) streamwise position of
minimum amplitude, x = 0.68 m.

approximately equal to the magnitude of the original negative perturbation, as shown
in figure 10(c).

The spatial resolution of the phase-averaged data in the streamwise direction (i.e.
∆x = 10 mm) is not sufficient to generate the true spatial contours of the disturbance
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x = 0.61 m, CI = 0.25%, (b) x = 0.64 m, CI = 0.08%. Solid lines are positive and dashed lines are
negative levels.

amplitude of the wave packet in detail. However, it should be noted that even if
the streamwise spacing of the spanwise planes was reduced, it would still be difficult
to present the true spatial three-dimensional contours of the disturbance amplitude
associated with the wave packet, because of the exponential growth of the amplitude
with streamwise distance. For example, the maximum r.m.s. amplitude varies by two
orders of magnitude in the region given by 0.72 m < x < 0.80 m. In this vicinity a
lack of convergence or scatter in the phase-averaged waveforms of only a few percent
in one region of a contour plot could correspond to a large percentage of the entire
perturbation in a nearby region.

By using phase, φ, as the third streamwise coordinate, it is possible to construct a
three-dimensional representation of the disturbance from the data in each spanwise
plane. A series of contour plots have been made in the (φ, y)- and (φ, z)-planes,
as shown in figure 11, figure 12 and figure 13. This technique will be referred to
as pseudo-flow visualization. The contours of the wave-packet amplitude have been
generated from cubic spline interpolation of the phase-averaged data onto a uniform
three-dimensional grid in (φ, y, z) space. The purpose of the interpolation is to obtain
a higher degree of smoothness for the contours and it should be emphasized that the
splines pass through all the measured data points. The pseudo-flow field will only
provide an accurate reproduction of the true (spatial) flow field if all disturbances
are propagating at an approximately constant streamwise velocity and the streamwise
derivatives of quantities are small, e.g. Taylor’s hypothesis in turbulent flow. Neither
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of these assumptions is true in the APG and the interpretation of these contours must
be made with some caution.

The overall shape of the perturbation remains much the same in the region where
the layer is attached, as shown in figure 11(a, b). The non-dispersive characteristic of
the contours and the exponential decay of the disturbance with streamwise distance
are consistent with the notion that the flow in the APG is stable with respect to
small disturbances while it remains attached. The counterpart of the small-amplitude
oscillations, referred to previously in figure 10(a), appear as three waves with small
positive amplitudes in figure 11(a). These waves appear to merge together with further
streamwise development as shown in figure 11(b).

As noted previously, after the layer separates, the rate of decay of the disturbance
with streamwise distance is reduced and a point of minimum amplitude is reached at
x= 0.68 m (see figure 9). The pseudo-flow visualization contours of the disturbance
amplitude corresponding to this position are shown in figure 12(a). By this streamwise
position, a positive amplitude wave has emerged upstream of the original negative
amplitude disturbance that was introduced at the hole. The spanwise extent of the
negative wave has more than doubled, increasing from to ∆z ≈ 18 mm, within
a streamwise distance of ∆x ≈ 40 mm, which indicates the onset of considerable
dispersion. With further streamwise development of ∆x ≈ 40 mm, the dispersion of
the wave packet is clearly evident in the pseudo-flow visualization contours shown in
figure 12(b). This position, i.e. x = 0.72 m, corresponds to the beginning of the region
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Figure 13. Pseudo-flow visualization contours of waves in the region of exponential growth rate of
r.m.s. disturbance amplitude with streamwise distance: (a) x = 0.76 m, CI = 0.5%, (b) x = 0.80 m,
CI = 2.5%.

of exponential growth of the maximum r.m.s. wave amplitude. Note that the region
affected by the disturbance extends beyond the immediate vicinity of the wave packet
in both the streamwise and spanwise directions at this location. A similar observation
is reported in the review papers of Kozlov (1984) and Dovgal et al. (1986). They
refer to experiments concerning the behaviour of a wave packet generated by a point
source located upstream of a laminar separation bubble on the smooth surface of a
wing. Considerable distortion of the flow in the bubble was also observed in these
experiments in regions away from the immediate vicinity of the ensuing wave packet.

Pseudo-flow visualization contours of the wave packet in the region where the
amplitude grows exponentially with streamwise distance are shown in figure 13(a, b).
This region is characterized by an increase in the number of waves within the
packet and considerable dispersion. As mentioned previously, the exponential growth
suggests linear behaviour (in terms of linear stability theory) despite the rather large
amplitudes of the disturbance, i.e. ũmax/Uref ≈ 20%.

The local regions of maximum amplitude follow a trajectory corresponding to
the inflection points in the mean flow. This suggests that the dominant instability
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Figure 14. True (i.e. spatial) flow visualization contours of phase-averaged spanwise vorticity for
Phase 31 calculated from cross-wire data on the centreline plane. The wave packet in figure 13 is
associated with formation of Kelvin–Helmholtz cat’s-eyes in the detached shear layer. CI = 100 s−1.

mechanism governing the growth of the wave packet is inviscid. Further support
for this assertion can be found in the true spatial flow visualization contours of
the phase-averaged spanwise vorticity obtained in this vicinity that are shown in
figure 14. The contours have been calculated from cross-wire data in the centreline
plane. Comparison of figure 14 with figure 13(b) shows that the wave packet is
associated with the formation of the cat’s eye pattern which is a characteristic
of Kelvin–Helmholtz instability. Referring to figure 6(b), it should be noted that
the cat’s eye pattern in figure 14 is located above the region affected by hot-wire
rectification errors.

The perturbations in the spanwise vorticity in figure 14 are similar to those occurring
in a free shear layer, i.e. the presence of the wall appears to exert little influence on the
detached shear layer, at least during the initial stages. This observation suggests that
the dominant wave frequency might be predicted from inviscid linear stability theory.
For a free shear layer between two streams with velocity U1 and U2, the velocity
difference across the shear layer is given by ∆U = U2 −U1 and the average velocity
can be defined as Um = (U1 +U2)/2. The vorticity thickness, δω = ∆U

/(
∂u/∂y

)
max

and the velocity ratio λ = ∆U/ (2Um) can be used to characterize the shear layer.
Following Monkewitz & Huerre (1982) and Michalke (1964), the most amplified
frequency may be expressed non-dimensionally as ω∗= 1

4
δω2πf/Um. The frequency

of the most amplified mode predicted from inviscid linear stability theory for a parallel
shear flow with a tanh velocity profile is given by ω∗= 0.21.

Villermaux (1998) investigated the effects of viscosity on the mode selection and
associated growth rate in the inflectional instability of shear layers. A viscous correc-
tion term was derived for the most unstable mode and its growth rate in the form
of a correction factor, i.e. {1 + [(a/0.2)/Re]2}. The constant, a, is dependent on the
shape of the initial velocity profile, e.g. a = 1.216 for the tanh profile, while a = 3 for
the piecewise linear profile. The Reynolds number in the correction factor is based
on half the velocity difference across the layer, ∆U/2 and the vorticity thickness is
used for the length scale. For the detached shear layer in the present investigation
the viscous correction term of Villermaux amounts to about 1 part in 104, which
is negligibly small. However, the mean flow is non-parallel and consideration of the
stability characteristics is complicated by the presence of the APG. Nevertheless, the
non-dimensional frequency, ω∗, predicted from inviscid linear stability theory is not
strongly dependent on either λ or the profile shape for the case of parallel flow
in a zero pressure gradient (ZPG). Therefore this parameter could still have some
relevance in the present configuration, despite the rapid development with streamwise
distance and the influence of the APG.
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In contrast with a free shear layer in a ZPG, the free-stream velocity at the edge
of the separated layer is ill-defined, i.e. U(y) does not tend to a constant as y → ∞.
The uncertainty is most pronounced in the vicinity of the reattachment. Owing to
this uncertainty the following method is used to calculate ω∗. The maximum velocity
in each profile is used to define U1. The flying-hot-wire data are used to estimate U2.
The velocity gradient

(
∂u/∂y

)
max

is estimated numerically after visually dentifying
the region of linear variation in the profiles shown in figure 3(c). The frequency f
is obtained from a well-defined, very narrow band of elevated energy level in the
corresponding power spectra measurements obtained without the disturbance. The
frequency f also closely corresponds to the passing frequency of the waveforms
generated by the disturbance which has been estimated from the wavelength and
propagation velocity of the wave packet. An approximately linear variation of ω∗
with streamwise distance exists in the region of exponential growth, i.e. ω∗ = 0.10, x =
0.70 m → ω∗ = 0.25, x = 0.84 m. Simple interpolation of a least-squares line of best
fit applied to the data demonstrates that the inviscid linear stability theory value of
ω∗ = 0.21 corresponds to the position x = 0.80 m. This is the location where the cat’s
eye patterns can be seen in the contours of the phase-averaged spanwise vorticity
in figure 14. The observation is therefore consistent with the notion that an inviscid
instability mechanism is responsible for the growth of the disturbance.

4.2. Formation of vortex loops in the reattachment region

A sequence from an animation of the spanwise vorticity contours derived from the
cross-wire data measured in the centreline plane is shown in figure 15. The sequence
is plotted using an increment of four phase intervals between each frame and the
streamwise distance between the measurement grid points is ∆x = 3 mm and 17
uniformly spaced grid points are used normal to the test surface. The concentration
of spanwise vorticity in the form of the cat’s eye patterns in the initial stages is
reminiscent of the roll-ups that appear in a free shear layer. Four distinct regions
of concentrated spanwise vorticity emerge in the vicinity of the reattachment. These
regions are labelled A, B, C and D and a dashed line has been faired by hand
between each one in the subsequent frames as a means of following their streamwise
development. The first region, labelled A, appears to be short-lived, while the second
region of concentrated spanwise vorticity, labelled B, accelerates away from the wall
to become the dominant member of the group.

This vicinity of the flow field has been mapped out in great detail with a cross-wire
probe using a true three-dimensional measurement grid of dimension (Nx,Ny,Nz) =
(45, 17, 41). The 31 365 data points were measured twice, using both orientations of
the cross-wire probe, to obtain all three velocity components. These measurements
required a total of 31 days of continuous operation of the automated facility. A
sequence taken from an animation of a contour surface of vorticity magnitude is
shown in figure 16. The vorticity magnitude level used for the contour surface is given
by |Ω| = 140 s−1, which was calculated from the quantities 〈U〉, 〈V 〉 and 〈W 〉. The
data have not been interpolated and smoothing has not been applied to the phase-
averaged velocities to reduce the scatter introduced by the differentiation required
for calculation of the vorticity magnitude. The evolution of the three-dimensional
waves into a group of large-scale vortex loops is clearly visible. It is evident that
the regions of concentrated spanwise vorticity that appear in the centreline plane in
figure 15 correspond to sections through three-dimensional roll-ups that evolve into
vortex loops.

At first (e.g. Phase 35 in figure 16), the roll-ups are only slightly bowed and the
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Figure 15. Sequence from an animation of spanwise vorticity contours on the centreline plane
calculated from phase-averaged cross-wire data. Dashed lines trace the development of roll-ups into
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evolves into the largest vortex loop (also see figure 16). Vortex loop B is identifiable downstream in
the fully turbulent layer (see figure 20). CI = 100 s−1.
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vorticity is mostly aligned in the spanwise direction. With subsequent development,
the roll-ups develop ‘legs’ which move together and the curvature of the central region
increases and accelerates away from the wall leading to the formation of elongated
vortex loops. Compromises must be made in selecting the viewing angle and the
single representative contour surface level for the animation sequence. Smaller loops
form away from the centreline but they are difficult to ascertain. However one of the
smaller off-centreline loops can be seen in figure 16, i.e. Phase 55, for z < 0.

As noted in § 4.1, the non-dimensional frequency associated with the formation of
roll-ups in the detached shear layer corresponds to ω∗ = 0.21, as predicted by inviscid
linear stability theory. A similar result was also obtained for the two-dimensional
laminar separation bubble calculations of Pauley et al. (1990), i.e. they found the
streamwise position corresponding to the onset of two-dimensional vortex shedding
to coincide with the most unstable mode predicted by linear stability theory. The
connection between the two flows suggests that the evolution of the vortex loops
observed in the present work represents a three-dimensional form of vortex shedding.
Pauley et al. defined a Strouhal number based on the shedding frequency f, local
free-stream velocity and the momentum thickness of the layer at separation, i.e.

Stθ =
fθsep

(U1)sep

. (4.1)

They found the Strouhal number to be independent of the Reynolds number and
the pressure gradient, i.e. Stθ = 6.86 × 10−3. In the present work, a vortex shedding
frequency was determined from the wavelength and propagation velocity of the
centre-plane section through the three-dimensional vortex loops shown in figure 15.
The corresponding Strouhal number is Stθ = 8.54× 10−3 which is about 25% larger
than the invariant Strouhal number proposed by Pauley et al. for two-dimensional
vortex shedding.

As mentioned previously, flow visualization studies have demonstrated that a tur-
bulent spot appears to consist of an array of vortex loops. However measurements
of a turbulent spot reveal only one or two large eddies, e.g. Cantwell et al. (1978).
Evidently, the variance in the underlying detailed structure from realization to real-
ization causes washout of data. In the present investigation, the loops appearing in
the phase-averaged data downstream of the reattachment imply that the motions are
more coherent. The spatial distribution of the loops in the vicinity of the reattachment
may be similar to that occurring in a turbulent spot. Reynolds stress measurements
are used to explore this conjecture, since the fluctuations are less susceptible to errors
originating from hot-wire calibration drift and other spurious errors, compared to
the total velocity measurements which must then be differentiated to calculate the
total vorticity. The contribution to the Reynolds stress component normal to the test
surface is shown in the horizontal plane for Phase 47 in figure 17. It is evident that
the coherent motions appear to be confined within a heart-shaped boundary that is
reminiscent of the corresponding boundary of a turbulent spot in a laminar boundary
layer. The similarity is extraordinary since the surrounding flow is so highly unsteady
in the present case of the turbulent reattachment.

As mentioned in § 2.3, the Reynolds stress can be resolved into a contribution
resulting from the perturbations of the phase-averaged velocities and a background
component resulting from the random motion at constant phase. Both are phase-
averaged quantities and the broadband Reynolds stress is given by the sum of each
quantity, averaged over all phases, see (2.8). The background component originates
from two sources, i.e. fluctuations due to small-scale random motions superimposed
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Figure 17. Contours of (ṽ2)1/2/Uref for Phase 47 from cross-wire data in horizontal plane y= 10 mm.
Line labelled R–R indicates reattachment point on centreline without impulsive disturbance.
CI = 0.1%.

on the large-scale motions; and dispersion, introduced by phase jitter and the physical
differences between successive realizations. It is emphasized here again that it is not
possible to differentiate between the effects of fine-scale motions and dispersion.
Furthermore, it is not possible to determine whether the dispersion originates from
essentially the same vortex loop appearing at slightly different positions upon each
realization or whether there are small local differences between successive realizations.

Contours of the contribution and background Reynolds stresses are shown on
the centreline plane in figure 18(a–f) for Phase 47. This region is just downstream
of the reattachment and the corresponding spanwise vorticity contours have been
taken from figure 15 and superimposed as solid black contour lines. At this stage
of development, the contribution of the phase-averaged velocity components to the
Reynolds stress is larger than the random background components. The contours
of the contribution to the Reynolds stress components shown in figure 18(a–c) can
be understood by modelling the vortex loops (and their images in the wall) with
a number of straight line vortex segments and by using the Biot–Savart law for
calculation of the induced velocities. The vortex segment model indicates that the
largest streamwise component of the induced velocities is in the upstream direction
and occurs between the legs of the vortex loops, which is consistent with the contours
of ũ2/U2

ref shown in figure 18(a). The larger levels associated with loop B compared
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to loop A cannot be explained by the small differences in the amplitude of the
vorticity magnitude. The larger levels are the result of the sharper curvature of the
tip and the longer length of the legs of vortex loop B, compared to loop A, whose
features are much less pronounced. The contours of the contribution to the Reynolds
stress in the direction normal to the wall, ṽ2/U2

ref , are shown in figure 18(c). These
contours are also consistent with the vortex segment model. However the distribution
is asymmetrical with respect to the centre of cross-section through each loop since
there is some cancellation of the induced velocity between the loops. The contribution
to the Reynolds shear stress ũṽ/U2

ref can be divided into four quadrants based on the
sign of induced velocities as shown in figure 18(b). The quadrants are spatially related
to the distribution of the spanwise vorticity as shown by the regions labelled Q1 to
Q4 for loop B in figure 18(b). The induced velocities from the legs of the loops lead
to the 2nd and 3rd quadrants (closest to the wall) being dominant. Note the rather
large positive shear stress amplitude ũṽ/U2

ref associated with Q3.
The background Reynolds stresses resulting from fluctuations which are random

with respect to the total phase-averaged velocities are shown in figure 18(d–f) and
they are more uniformly distributed than the periodic contribution components. Large
levels of the streamwise component

〈
u′′2
〉
/U2

ref are observed to extend from regions
of concentrated vorticity down towards the wall in figure 18(d) corresponding to
the region between the legs of the vortex loops. The distribution of the background
component of the shear stress 〈u′′v′′〉 /U2

ref in figure 18(e) appears to be similar to
the streamwise component. The distribution is almost entirely negative except for a
narrow region of positive amplitude which can be found in the vicinity of x = 0.9 m,
i.e. between the legs of vortex loop A. In contrast, the background component normal
to the wall

〈
v′′2
〉
/U2

ref is more locally concentrated as shown in figure 18(f ).
If phase jitter were significant, then local maxima in the background Reynolds

stress might be expected to coincide with large gradients in the contribution to the
corresponding Reynolds stress component. Inspection of figure 18(a–f) suggests that
this does not appear to be the case at this stage of development. For example,
in figure 18(c), large gradients of ṽ2/U2

ref not only correspond to the centre of〈
v′′2
〉
/U2

ref but also extend upstream and downstream. However, the local maxima

in the background component
〈
v′′2
〉
/U2

ref are confined to the region of concentrated
vorticity as shown in figure 18(f ). These observations suggest that at this stage of
development it is likely that the background Reynolds stress distribution can be
attributed to fine-scale motions associated with the vortex loops.

4.3. Persistence of vortex loops in the downstream turbulent boundary layer

Phase-averaged cross-wire data (UV -orientation only) have been measured in a
number of sequential centreline planes in the turbulent boundary layer downstream
of the reattachment. The results from each grid have been combined to form a
composite data set on a single grid. Cross-wire data (using both probe orientations)
have also been measured in a number of spanwise planes. The increased phase jitter
and the presence of fine-scale turbulent motions cause the magnitude of the phase-
averaged velocity perturbations to be much smaller in the downstream turbulent
boundary layer, e.g. the maximum r.m.s. amplitude of the phase-averaged streamwise
fluctuations at x = 2.0 m is an order of magnitude less than the peak value observed
in the reattachment region.

It is well known that the flow pattern generated by a velocity vector field depends
on the velocity of the observer. It is difficult to select an observer velocity such that the
effect of the temporal mean velocity gradient at the wall is reduced to an insignificant
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ref , (b)
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level. Furthermore, the small magnitude of the phase-averaged perturbations adds
to the difficulties of interpretation of the total phase-averaged velocity vector flow
field since the temporal mean velocity components are considerably larger. Small
measurement errors in the temporal mean flow quantities can introduce considerable
scatter since the errors can easily be of comparable size to the phase-averaged
perturbations.

Representative phase-averaged velocity perturbation vectors are shown in fig-
ure 19(a). The flow pattern generated by the velocity perturbation vector field avoids
many of the difficulties mentioned above, but it is difficult to attach precise meaning
to the flow pattern. Vorticity is a quantity that is independent of the velocity of
the observer. The corresponding contours of the phase-averaged spanwise vorticity
perturbations are shown in figure 19(b). The overall shape of the spanwise vorticity
perturbation contours changes very little for different streamwise positions. However,
the reduced magnitude of the phase-averaged perturbations and the small measure-
ment errors in the temporal mean velocity components have the combined effect
of introducing considerable scatter into the contours of the total phase-averaged
vorticity. The scatter increases with downstream distance. Corresponding total phase-
averaged spanwise vorticity contours are shown in figure 19(c). The effects mentioned
above are not severe at this streamwise position, but by x = 2.0 m, the contours
of phase-averaged total vorticity show considerable scatter, while the contours of
the phase-averaged vorticity perturbations have much the same appearance as those
further upstream.

The small rate of change of the vorticity perturbation contours with streamwise
distance suggests that Taylor’s hypothesis for phase (pseudo-flow visualization) can
be applied to the spanwise grids to generate three-dimensional data sets that are
representative of the true spatial three-dimensional data (which have not been mea-
sured). The total phase-averaged vorticity contours obtained by applying Taylor’s
hypothesis for phase to the centreline data of the spanwise plane located at x = 1.5 m
are shown in figure 19(d ). A uniform scaling was used for transforming φ to x which
was determined from a local linear fit to the phase of the peak values of ũ(y, z)
as a function of x. The reasonably good correspondence between the contours in
figure 19(c, d) indicates that the three-dimensional data generated from the measure-
ments in the spanwise planes provide a reasonably close approximation to the true
spatial three-dimensional data.

Complete three-dimensional, i.e.
(〈U〉 , 〈V 〉 , 〈W 〉), velocity vector fields have been

generated using Taylor’s hypothesis applied to the spanwise planes located at x = 1.0,
1.25, 1.5 and 2.0 m. Contour surfaces of the corresponding total phase-averaged
vorticity magnitude and the phase-averaged vorticity perturbations are shown in
figure 20(a–h). Each figure also contains colour contours on the centreline plane and
on a plane parallel to the wall. The wall distance of the plane parallel to the wall was
chosen to aid interpretation of the three-dimensional data.

The perturbation, figure 20(a), and total, figure 20(b), phase-averaged vorticity
magnitude distribution at x = 1.0 m provide additional feedback on the accuracy of
Taylor’s hypothesis for generating three-dimensional flow fields from the spanwise
planar measurements. The greatest deviation from the true spatial distribution is
expected to occur at this position because the streamwise derivatives of flow quantities
are the largest here. The flow field generated from this spanwise plane overlaps the
true spatial measurements in figure 15 and figure 16 (e.g. Phase 55) and a comparison
reveals that the salient features have been reproduced.

Further downstream, at x = 1.25 m, the contours of vorticity magnitude in figure
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20(c, d) clearly show the presence of a vortex loop which can be traced back to the
dominant loop that emerges in the reattachment region upstream. This loop is labelled
B in figure 15. Both the perturbation and total vorticity contour surfaces indicate
that the vorticity is more concentrated in the outer region of the loop. The legs of
the loop extend down close to the wall but this is not visible for the chosen contour
surface level. There are two additional noteworthy regions of concentrated vorticity
present in the total vorticity magnitude distribution in figure 20(d ). The first region
is located near the wall in the vicinity of the centreline between the legs of the loop.
It should be emphasized that this region is distinctly separate from the legs of the
loop. The local ‘upwelling’ of the concentrated vorticity at the wall can be explained
in terms of the induced velocities generated by the loop. The second noteworthy
region consists of a pair of upwellings of near-wall vorticity symmetrically displaced
from the centreline downstream of the loop. It is difficult to explain these upwellings
in terms of velocities induced by the vortex loop. These regions may be related to
remnants of the first distinct roll-up, labelled A, in the reattachment region.

The loop and the two regions of concentrated vorticity can also be seen in the
total vorticity contours at x = 1.5 m in figure 20(f ). The local upwelling of near-wall
vorticity between the legs can be more clearly seen in the centreline plane of the true
spatial contours of figure 19(c) in the vicinity of x = 1.4 m. As mentioned previously,
the phase-averaged velocity perturbations are considerably weaker at x = 2.0 m and
considerable scatter in the total vorticity contours is apparent as shown in figure 20(h).
However the loop is still clearly visible in the perturbation contour surface shown in
figure 20(g).

It is emphasized once again that the cross-wire data have not been interpolated and
that smoothing has not been applied to the phase-averaged velocities to reduce the
scatter introduced by the differentiation to calculate the vorticity magnitude. Given
these limitations, and the reduced magnitude of the phase-averaged perturbations,
it is extraordinary that the phase-averaged vortex loop formed in the reattachment
region retains its identity some 20 boundary layer thicknesses downstream in the fully
turbulent boundary layer. Given the rate of decay of the phase-averaged perturbations,
it is evident that the loop would persist in the phase-averaged data for an even greater
streamwise distance if a longer test section were available.

5. Concluding remarks
It is possible that the most amplified modes of the wave packet could have much

smaller amplitude than the damped modes, which would explain the initial decay of the
amplitude with streamwise distance in the APG while the layer is attached. However,
it is more probable that that the impulsive disturbance excites a uniform spectrum of
spanwise modes, i.e. the assumption used by Gaster (1975). Consequently, the initial
decay suggests that the layer is viscously stable with respect to small-magnitude
disturbances (such as Tollmien–Schlichting waves) while it remains attached. The
growth in wave amplitude that occurs after separation is due to an inviscid Kelvin–
Helmholtz instability in the detached shear layer. The non-dimensional frequency
associated with the appearance of the cat’s eye pattern corresponds to the most
amplified mode predicted by linear stability theory for the parallel flow of a free
shear layer in a ZPG. It is therefore appropriate to refer to the disturbance as a
Kelvin–Helmholtz wave packet, analogous to the Tollmien–Schlichting wave packet
studied by Gaster (1975) and Gaster & Grant (1975).

The dispersion and rapid growth in amplitude associated with the Kelvin–Helmholtz
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Figure 20. Contour surface and colour contours of vorticity magnitude on the centreline plane and
on a plane parallel to wall. Vorticity magnitude calculated from the three-dimensional velocity field
derived by applying Taylors hypothesis for phase to cross-wire measurements in spanwise planes (i.e.
pseudo-flow visualization). Vortex loop labelled B in figure 15 persists in the downstream turbulent
boundary layer. (a), (c), (e) and (g) Vorticity magnitude perturbations; (b), (d ), (f ) and (h) total
vorticity magnitude. Location of spanwise planes: (a), (b) at x = 1.0 m, (c), (d ) at x = 1.25 m, (e),
(f ) at x = 1.5 m, and (g), (h) at x = 2.0 m.

wave packet lead to the formation of roll-ups which ultimately evolve into large-scale
vortex loops in the vicinity of the reattachment. When the disturbance is present
in the layer, the reattachment occurs only a little further upstream as indicated by
the streamwise Cp distributions and the broadband Reynolds stress distributions.
The passing frequency of the phase-averaged disturbance calculated from the wave-
length and phase velocity is very closely the same as the centre frequency of a
very narrow band of elevated energy level in the power spectra observed without
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the disturbance. The same exponential growth rate occurs for the wave packet and
the background disturbances. Therefore it is tempting to conclude that in general
the phase-averaged observations are representative of instabilities arising from three-
dimensional background disturbances present in the flow. However other factors
must be considered to determine the degree to which the phase-averaged observa-
tions are representative of the unsteady phenomena that occur in the detached shear
layer.

The experiments described by Kozlov (1984) and Dovgal et al. (1986) demonstrate
that two-dimensional instability waves can form in the detached shear layer under
the excitation of acoustic waves originating in the far field, e.g. sound from a
speaker located in the wind tunnel diffuser. Therefore, environmental noise in the test
section could be responsible for a large proportion of the unsteadiness leading to the
reattachment in the present investigation. The spanwise non-uniformity observed in
the reattachment region, as shown in figure 8(a), does not preclude the occurrence
of two-dimensional instability waves. It is possible that three-dimensional secondary
instabilities could be associated with the initially two-dimensional waves in the region
of nonlinear growth, just prior to the reattachment, i.e. analogous to the spanwise
waviness associated with secondary instability of Tollmien–Schlichting waves in a
Blasius boundary layer prior to nonlinear breakdown. However, Kozlov (1984) and
Dovgal et al. (1986) report that large-amplitude acoustic waves (e.g. 100 dB) are
typically required to generate waves of significant amplitude in detached shear layers.
Furthermore, the detached shear layer is receptive only to a relatively narrow band
of frequencies. The background noise level at the entrance to the test section in
the present investigation is estimated to be in the range of 20 dB to 30 dB based
on measurements using a calibrated Bruel & Kjaer microphone and amplifier. The
relative amplitude of the microphone signal is quite small in a band corresponding to
the blade passing frequency of 72 Hz, while the corresponding spectra of the signal
from a hot wire located in the detached shear layer contains a narrow band of
elevated amplitude with a centre frequency of 87 Hz. These measurements suggest
that it is unlikely that instabilities associated with two-dimensional waves originating
from acoustic disturbances are responsible for the peak in the hot-wire spectra.
Therefore, purely two-dimensional waves probably do not play a significant role in the
reattachment in the present configuration and the development of three-dimensional
phenomena is likely to be important.

The contribution to the Reynolds stress component normal to the test surface
shown in figure 8(c) demonstrates how vortex loops can introduce three-dimensional
characteristics into the mean flow. The dominant flow structure in the reattachment
region may consist of vortex loops similar to the phase-averaged observations in
figure 16. However, if the spanwise variation in the contours of the total broadband
Reynolds stress shown in figure 8(a) is to be attributed to formation of vortex
loops, then the probability of the formation of a loop at a given spanwise position
would have to be non-uniform. Such a statistically non-uniform distribution for the
appearance of vortex loops in the reattachment region may be somehow associated
with the spanwise variations in the layer thickness upstream of the separation that are
implied by the streaks appearing in the contours in figure 7(a). However, in the present
work, no attempt has been made to establish a direct connection between the mean
flow non-uniformity upstream of the separation and downstream of the reattachment.

The coupling between the mean flow and instabilities appearing in separated flows is
noted in the review by Dovgal et al. (1994). Larger disturbance levels in the detached
shear layer lead to a shorter bubble in the mean flow sense. The reduced length of
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the bubble when the disturbance is present is evident in the Cp distribution shown
in figure 2. The contours in figure 8(a, b) are also consistent with the formation of a
shorter bubble when the disturbance is present since larger amplitudes are observed
at a given position on the centreline upstream of the reattachment. For the case
without the disturbance, in figure 8(a), the spanwise positions of regions of elevated
amplitude upstream of the reattachment correlate well with the spanwise positions
of the peak amplitude levels downstream of the reattachment. However, for the case
with the disturbance, in figure 8(b), the broadband amplitude level at a given position
on the centreline upstream of the reattachment is larger, while the peak amplitude
level downstream of the reattachment is smaller, than when the disturbance is not
present. This observation is difficult to explain and may imply that other phenomena
also play an important role in the reattachment process.

The evolution of vortex loops observed in the present work could represent a
three-dimensional form of vortex shedding, analogous to the two-dimensional vortex
shedding in the computations by Pauley et al. (1990). It is clear from their work that
the vortex shedding is not directly associated with the bubble, but rather that the
separation bubble is responsible for the establishment of a free-shear layer and that
the shedding process is initiated by an inviscid instability associated with the inflection
point which lies outside the bubble. In both flows, the frequency of the instability
appearing in the detached shear layer corresponds to the most amplified mode
predicted by inviscid linear stability theory. Furthermore, the difference between the
Strouhal numbers for the two-dimensional and three-dimensional shedding is fairly
small (based on the parameters of Pauley et al.). Overall, there is a similarity between
the vortex shedding observed by Pauley et al. and that behind a blunt two-dimensional
body, such as a cylinder, in so far as both result in limit-cycle oscillations. Based
on this observation, the two-dimensional vortex shedding observed by Pauley et al.
is most probably the result of an absolute instability, in terms of the classification
offered by Huerre & Monkewitz (1990).

One property of an absolute instability is that its manifestation at a given streamwise
position remains after the disturbance has been removed. For example, the vortex
shedding behind a two-dimensional cylinder will persist indefinitely once it has been
excited by an impulsive disturbance (for a Reynolds number based on diameter
greater than 40). Classification of the phenomena observed by Pauley et al. (1990) is
not straightforward since the impulsive disturbance (i.e. application of the APG) is
responsible for establishing the mean flow and it could also be responsible for exciting
the instability in the detached shear layer. On the other hand, the formation of three-
dimensional vortex loops generated by the impulsive disturbance in the present work
appears to be transient in the sense that the formation of the loops does not persist
indefinitely, and another application of the impulsive disturbance is required for their
generation. In terms of the nomenclature of Huerre & Monkewitz (1990), the three-
dimensional vortex shedding process could be classified as a convective instability.
Further work is required to determine whether these hypotheses are correct, i.e. that
three-dimensional vortex shedding can be classified as a convective instability, while
the corresponding two-dimensional vortex shedding in the same flow should be viewed
as an absolute instability.

The dominant phase-averaged vortex loop formed in the reattachment region retains
its identity some 20 boundary layer thicknesses downstream in the fully turbulent
boundary layer. The loop would persist for an even greater distance if a longer
test section were available. The phase-averaged velocity field and Reynolds stress
distribution surrounding the vortex loop in the turbulent boundary layer should be of
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some interest since many workers have proposed that vortex loops are the dominant
coherent structure underlying turbulent boundary layers in general.

The flow will provide a challenging test case for computational studies. The Falkner
& Skan velocity profile in the FPG provides a simple and convenient inlet boundary
condition. Yet the satisfactory treatment of the exceptionally large velocity fluctuations
and the instantaneous flow reversals in the reattachment region will be a formidable
task.

It should be noted that there are some similarities with the process of shear-layer
breakdown and the formation of vortex loops that occur in attached boundary layers.
For example, secondary instability of boundary layers, Herbert (1988), involves the
onset of waviness in initially two-dimensional Tollmien–Schlichting waves and the
subsequent nonlinear breakdown leads to the formation of smaller detached shear
layers and vortex loops due to inflectional instability. Unlike the detached shear
layer above the separation bubble, considerable detail is known about the processes
occurring in attached boundary layers. For example, Kachanov (1994) describes
various classifications such as K-type breakdown, where the loops or Λ-vortices are
aligned, and N-type breakdown, where the Λ-vortices are staggered.

The APG imposed by suction through the ceiling of the duct in the study of Pauley
et al. (1990) is different to the present configuration, since the APG is localized and of
finite length. The flow experiences a ZPG downstream of the bubble which allows the
formation of a steady bubble to occur at low Reynolds numbers. In contrast, the APG
in the present configuration extends to the end of the test section and the large stream-
wise extent of the detached shear layer almost certainly precludes the possibility of
obtaining a steady separation bubble. Even if the Reynolds number were substantially
reduced and even if the background disturbances were reduced to immeasurably small
levels, it is almost certain that the disturbances would still have the opportunity to
grow to large enough amplitudes to initiate the reattachment. In order to clearly dif-
ferentiate between competing effects, an experimental configuration is required where
the reattachment is laminar. Small finite-amplitude two-dimensional disturbances (e.g.
vibrating ribbon) and three-dimensional disturbances (e.g. impulsive and harmonic
point sources) could then be deliberately introduced in a controlled manner, and any
changes in the characteristics of the separation bubble could then be directly attributed
to the presence of the disturbances. A precise one-to-one correspondence might then
be established between observation, theory and computation, along the lines that
have led to advances in understanding transition of the Blasius boundary layer.

The properties of the turbulent boundary layer downstream of the reattachment
show considerable differences to the turbulent boundary layer downstream in the
study reported by Spalart & Watmuff (1993). For example, the peak values of the
Reynolds shear stress are located in the central portion of the layer downstream of
the region reported by Spalart & Watmuff (see figure 7 of Watmuff 1995) while the
peak values are located close to the wall in the layer downstream of the reattachment
considered in the present paper. The differences are interesting because the same
unit Reynolds number and pressure distribution are imposed, i.e. the differences
must be attributed to upstream history effects. Both flows will provide a significant
challenge for advanced code development and for the testing of turbulence models.
It is anticipated that a comparison will be published separately showing the widely
different characteristics of the two turbulent boundary layers.
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